All-optical modulation based on MoS2-Plasmonic nanoslit hybrid structures
Autor: | Xingzhan Wei, Guo Ping Wang, Changbin Nie, Feiying Sun, Hu Mao, Yupeng Zhang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
business.industry Physics QC1-999 All optical modulation Physics::Optics intraband transition waveguide Waveguide (optics) Atomic and Molecular Physics and Optics plasmonic nanoslit Electronic Optical and Magnetic Materials mos2 all-optical modulator Optoelectronics Electrical and Electronic Engineering business Plasmon Biotechnology |
Zdroj: | Nanophotonics, Vol 10, Iss 16, Pp 3957-3965 (2021) |
ISSN: | 2192-8614 |
Popis: | Two-dimensional (2D) materials with excellent optical properties and complementary metal-oxide-semiconductor (CMOS) compatibility have promising application prospects for developing highly efficient, small-scale all-optical modulators. However, due to the weak nonlinear light-material interaction, high power density and large contact area are usually required, resulting in low light modulation efficiency. In addition, the use of such large-band-gap materials limits the modulation wavelength. In this study, we propose an all-optical modulator integrated Si waveguide and single-layer MoS2 with a plasmonic nanoslit, wherein modulation and signal light beams are converted into plasmon through nanoslit confinement and together are strongly coupled to 2D MoS2. This enables MoS2 to absorb signal light with photon energies less than the bandgap, thereby achieving high-efficiency amplitude modulation at 1550 nm. As a result, the modulation efficiency of the device is up to 0.41 dB μm−1, and the effective size is only 9.7 µm. Compared with other 2D material-based all-optical modulators, this fabricated device exhibits excellent light modulation efficiency with a micron-level size, which is potential in small-scale optical modulators and chip-integration applications. Moreover, the MoS2-plasmonic nanoslit modulator also provides an opportunity for TMDs in the application of infrared optoelectronics. |
Databáze: | OpenAIRE |
Externí odkaz: |