Using Compound-Specific Isotope Analysis to Assess Biodegradation of Nitroaromatic Explosives in the Subsurface

Autor: Jakov Bolotin, Shirley F. Nishino, Reto S. Wijker, Jim C. Spain, Thomas B. Hofstetter
Rok vydání: 2013
Předmět:
Zdroj: Environmental Science & Technology. 47:6872-6883
ISSN: 1520-5851
0013-936X
DOI: 10.1021/es3051845
Popis: Assessing the fate of nitroaromatic explosives in the subsurface is challenging because contaminants are present in different phases (e.g., bound to soil or sediment matrix or as solid-phase residues) and transformation takes place via several potentially competing pathways over time-scales of decades. We developed a procedure for compound-specific analysis of stable C, N, and H isotopes in nitroaromatic compounds (NACs) and characterized biodegradation of 2,4,6-trinitrotoluene (TNT) and two dinitrotoluene isomers (2,4-DNT and 2,6-DNT) in subsurface material of a contaminated site. The type and relative contribution of reductive and oxidative pathways to the degradation of the three contaminants was inferred from the combined evaluation of C, N, and H isotope fractionation. Indicative trends of Δδ(15)N vs Δδ(13)C and Δδ(2)H vs Δδ(13)C were obtained from laboratory model systems for biodegradation pathways initiated via (i) dioxygenation, (ii) reduction, and (iii) CH3-group oxidation. The combined evaluation of NAC isotope fractionation in subsurface materials and in laboratory experiments suggests that in the field, 86-89% of 2,4-DNT transformation was due to dioxygenation while TNT was mostly reduced and 2,6-DNT reacted via a combination of reduction and CH3-group oxidation. Based on historic information on site operation, our data imply biodegradation of 2,4-DNT with half-lives of up to 9-17 years compared to 18-34 years for cometabolic transformation of TNT and 2,6-DNT.
Databáze: OpenAIRE