The human health risks assessment of mercury in soils and plantains from farms in selected artisanal and small‐scale gold mining communities around Obuasi, Ghana

Autor: Yasuhiro Ishibashi, Randy Novirsa, Hideki Shiratsuchi, Sylvester Addai-Arhin, Nana Hirota, Quang Dinh Phan, Koji Arizono, Hui Ho Jeong
Rok vydání: 2021
Předmět:
Zdroj: Journal of Applied Toxicology. 42:258-273
ISSN: 1099-1263
0260-437X
Popis: Food consumption remains the commonest pathway through which humans ingest higher levels of mercury (Hg). Long-term exposure to Hg through Hg-contaminated food may result in acute or chronic Hg toxicity. Incessant discharge of Hg waste from ASGM facilities into nearby farms contaminates food crops. Ingestion of such food crops by residents may lead to detrimental human health effects. The human health risks upon exposure to total mercury (THg) and methylmercury (MeHg) in farmland soils and plantains from farms sited near ASGM facilities were studied in four communities around Obuasi, Ghana. The human health risk assessment was evaluated using hazard quotient (HQ), estimated average daily intake (e AvDI), hazard index (HI) and Hg elimination and retention kinetics. Tweapease, Nyamebekyere and Ahansonyewodea had HQ, e AvDI and HI for THg of plantains for both adults and children below the recommended USEPA limit of 1, 3 × 10-4 mg/kg/day and 1, respectively. Odumase had HQ, e AvDI and HI for THg of plantains for both adults and children, higher than the guideline values. This meant that only Odumase may cause non-carcinogenic human health effects upon repeated exposure. The HQ, e AvDI and HI values of MeHg for all the study areas were far below guideline values, hence may not pose any non-carcinogenic human health risks to residents even upon repeated exposure. Retention and elimination kinetics of Hg also showed that only plantains from Odumase may pose significant non-carcinogenic human health risks to residents because the final amount of inorganic mercury exceeded the extrapolated USEPA guideline value of 0.393 μg/kg/year.
Databáze: OpenAIRE