Swift heavy ion-irradiated multi-phase calcium borosilicates: implications to molybdenum incorporation, microstructure, and network topology

Autor: Isabelle Monnet, Sylvain Peuget, Karishma B. Patel, Ian Farnan, Clara Grygiel, Sophie Schuller
Přispěvatelé: Patel, Karishma B. [0000-0001-5787-2422], Schuller, Sophie [0000-0002-4511-4568], Grygiel, Clara [0000-0002-4915-1016], Monnet, Isabelle [0000-0002-3821-6670], Farnan, Ian [0000-0001-7844-5112], Apollo - University of Cambridge Repository, Department of Earth Sciences [Cambridge, UK], University of Cambridge [UK] (CAM), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Patel, KB [0000-0001-5787-2422], Schuller, S [0000-0002-4511-4568], Grygiel, C [0000-0002-4915-1016], Monnet, I [0000-0002-3821-6670], Farnan, I [0000-0001-7844-5112]
Rok vydání: 2019
Předmět:
Zdroj: Journal of Materials Science
Journal of Materials Science, Springer Verlag, 2019, 54 (18), pp.11763-11783. ⟨10.1007/s10853-019-03714-2⟩
Journal of Materials Science, 2019, 54 (18), pp.11763-11783. ⟨10.1007/s10853-019-03714-2⟩
ISSN: 0022-2461
1573-4803
DOI: 10.1007/s10853-019-03714-2⟩
Popis: International audience; A series of calcium borosilicate glasses with varying [B2O3], [MoO3], and [CaO] were prepared and subjected to 92 MeV Xe ions used to simulate the damage from long-term α-decay in nuclear waste glasses. Modifications to the solubility of molybdenum, the microstructure of separated phases, and the Si–O–B network topology were investigated following five irradiation experiments that achieved doses between 5 × 1012 and 1.8 × 1014 Xe ions/cm2 in order to test the hypotheses of whether irradiation would induce, propagate, or anneal phase separation. Using electron microscopy, EDS analysis, Raman spectroscopy, and XRD, irradiation was observed to increase the integration of MoO42− by increasing the structural disorder within and between heterogeneous amorphous phases. This occurred through Si/B-O-Si/B bond breakage and reformation of boroxyl and 3/4-membered SiO4 rings. De-mixing of the Si–O–B network concurrently enabled cross directional Ca and Mo diffusion along defect created pathways, which were prevalent along the interface between phases. The initiation and extent of these changes was dependent primarily on the [SiO2]/[B2O3] ratio, with [MoO3] having a secondary effect on influencing the defect population with increasing dose. Microstructurally, these changes to bonding caused a reduction in heterogeneities between amorphous phases by reducing the size and increasing the spatial distribution of immiscible droplets. This general increase in structural disorder prevented crystallization in most cases, but where precipitation was initiated by radiation, it was re-amorphized with increasing dose. These outcomes suggest that internal radiation can alter phase separation tie lines, and can therefore be used as a tool to design certain structural environments for long-term encapsulation of radioisotopes.
Databáze: OpenAIRE