Finite Element Approximation of the Spectrum of the Curl Operator in a Multiply Connected Domain
Autor: | A. Alonso-Rodríguez, Jessika Camaño, Alberto Valli, Rodolfo Rodríguez, Pablo Venegas |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Beltrami fields Line integral 010103 numerical & computational mathematics 01 natural sciences symbols.namesake Finite element approximation Force-free fields Multiply connected domain Spectrum of $$mathop mathbf curl olimits $$curloperator Analysis Computational Mathematics Computational Theory and Mathematics Applied Mathematics 0101 mathematics Eigenvalues and eigenvectors Saddle Mathematics Curl (mathematics) Numerical analysis 010102 general mathematics Hilbert space Eigenfunction Finite element method symbols |
Zdroj: | Foundations of Computational Mathematics. 18:1493-1533 |
ISSN: | 1615-3383 1615-3375 |
DOI: | 10.1007/s10208-018-9373-4 |
Popis: | In this paper we are concerned with two topics: the formulation and analysis of the eigenvalue problem for the $$\mathop {\mathbf {curl}}\nolimits $$ operator in a multiply connected domain and its numerical approximation by means of finite elements. We prove that the $$\mathop {\mathbf {curl}}\nolimits $$ operator is self-adjoint on suitable Hilbert spaces, all of them being contained in the space for which $$\mathop {\mathbf {curl}}\nolimits \varvec{v}\cdot \varvec{n}=0$$ on the boundary. Additional constraints must be imposed when the physical domain is not topologically trivial: we show that a viable choice is the vanishing of the line integrals of $$\varvec{v}$$ on suitable homological cycles lying on the boundary. A saddle-point variational formulation is devised and analyzed, and a finite element numerical scheme is proposed. It is proved that eigenvalues and eigenfunctions are efficiently approximated and some numerical results are presented in order to assess the performance of the method. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |