Big Data in Agricultural and Food Research : Challenges and Opportunities of an Integrated Big Data E-infrastructure

Autor: Nikos Manouselis, Panagiotis Zervas, Matthias Filter, George Kakaletris, Rob Lokers, Leonardo Candela, Pascal Neveu, Maritina Stavrakaki, Pythagoras Karampiperis, Odile Hologne
Přispěvatelé: Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA), DIST Délégation Information Scientifique et Technique (DV-IST), Institut National de la Recherche Agronomique (INRA), Greek Research and Technology Network, Centre for Research & Technology Hellas (CERTH), Agroknow [Athens], Wageningen Environmental Research, Wageningen University and Research [Wageningen] (WUR), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), National and Kapodistrian University of Athens (NKUA), Pisa Research Area - National Research Council [Pise] (Italian National Research Council ) (CNR - Pisa), Bundesinstitut für Risikobewertung - Federal Institute for Risk Assessment (BfR), Emrouznejad Ali, Charles Vincent, Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0106 biological sciences
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences
Earth Observation and Environmental Informatics
Computer science
media_common.quotation_subject
Big data
Context (language use)
Food safety risk assessment
01 natural sciences
Food safety
Presentation
Aardobservatie en omgevingsinformatica
e-infrastructure
agro-climatic
economic modelling
food security
plant phenotyping
food safety
risk assessment

[INFO]Computer Science [cs]
Virtual Research Environment
media_common
Risk assessment
2. Zero hunger
Food security
business.industry
04 agricultural and veterinary sciences
15. Life on land
Data science
Agriculture
Analytics
Scalability
040103 agronomy & agriculture
0401 agriculture
forestry
and fisheries

Agro-climatic
E-infrastructure
Economic modelling
business
Plant phenotyping
Agro-climatic Modelling
010606 plant biology & botany
Zdroj: Big Data for the Greater Good. Springer
Big Data for the Greater Good
Big Data for the Greater Good, pp.129-150, 2019, ⟨10.1007/978-3-319-93061-9_6⟩
Emrouznejad Ali; Charles Vincent. Big Data for the Greater Good, 42, Springer, Cham, 204 p., 2019, Studies in Big Data, 978-3-319-93060-2. ⟨10.1007/978-3-319-93061-9_6⟩
Big Data for the Greater Good. Studies in Big Data
Studies in Big Data ISBN: 9783319930602
ZENODO
Big Data for the Greater Good, edited by Ali Emrouznejad, Vincent Charles, pp. 129–150, 2018
info:cnr-pdr/source/autori:Karampiperis P; Lokers B.; Neveu P.; Hologne O.; Kakaletris G.; Candela L.; Filter M.; Manouselis N.; Stavrakaki M.; Zervas P./titolo:Big data in agricultural and food research: challenges and opportunities of an integrated big data e-infrastructure/titolo_volume:Big Data for the Greater Good/curatori_volume:Ali Emrouznejad, Vincent Charles/editore:/anno:2018
Popis: Agricultural and food research are increasingly becoming fields where data acquisition, processing, and analytics play a major role in the provision and application of novel methods in the general context of agri-food practices. The chapter focuses on the presentation of an innovative, holistic e-infrastructure solution that aims to enable researches for distinct but interconnected domains to share data, algorithms and results in a scalable and efficient fashion. It furthermore discusses on the potentially significant impact that such infrastructures can have on agriculture and food management and policy making, by applying the proposed solution in variegating agri-food related domains.
Databáze: OpenAIRE