Microcatheter delivery of neurotherapeutics: compatibility with mesenchymal stem cells
Autor: | Frederick F. Lang, Peter Kan, Stephen R. Chen, Kevin M. Camstra, Yuzaburo Shimizu, Jeremiah N. Johnson, Joy Gumin, Brittany C. Parker Kerrigan, Elizabeth J. Shpall, Visish M. Srinivasan |
---|---|
Rok vydání: | 2020 |
Předmět: |
Oncolytic adenovirus
business.industry Mesenchymal stem cell General Medicine Heparin Pharmacology medicine.disease Oncolytic virus 03 medical and health sciences Catheter 0302 clinical medicine 030220 oncology & carcinogenesis Glioma medicine Verapamil Stem cell business 030217 neurology & neurosurgery medicine.drug |
Zdroj: | Journal of Neurosurgery. 133:1182-1190 |
ISSN: | 1933-0693 0022-3085 |
DOI: | 10.3171/2019.6.jns19327 |
Popis: | OBJECTIVEBone marrow–derived human mesenchymal stem cells (BM-hMSCs) have been used in clinical trials for the treatment of several neurological disorders. MSCs have been explored as a delivery modality for targeted viral therapeutic agents in the treatment of intracranial pathologies. Delta-24-RGD, a tumor-selective oncolytic adenovirus designed to target malignant glioma cells, has been shown to be effective in animal models and in a recent clinical trial. However, the most efficient strategy for delivering oncolytic therapies remains unclear. BM-hMSCs have been shown to home toward glioma xenografts after intracarotid delivery. The feasibility of selective intraarterial infusion of BM-hMSCs loaded with Delta-24-RGD (BM-hMSC-Delta-24) to deliver the virus to the tumor is being investigated. To evaluate the feasibility of endovascular intraarterial delivery, the authors tested in vitro the compatibility of BM-hMSC-Delta-24 with a variety of commercially available, clinically common microcatheters.METHODSBM-hMSCs were cultured, transfected with Delta-24-RGD, and resuspended in 1% human serum albumin. The solution was then injected via 4 common neuroendovascular microcatheters of different inner diameters (Marathon, Echelon-14, Marksman, and SL-10). Cell count and viability after injection through the microcatheters were assessed, including tests of injection velocity and catheter configuration. Transwell assays were performed with the injected cells to test the efficacy of BM-hMSC-Delta-24 activity against U87 glioma cells. BM-hMSC-Delta-24 compatibility was also tested with common neuroendovascular medications: Omnipaque, verapamil, and heparin.RESULTSThe preinfusion BM-hMSC-Delta-24 cell count was 1.2 × 105 cells/ml, with 98.7% viability. There was no significant difference in postinfusion cell count or viability for any of the catheters. Increasing the injection velocity from 1.0 ml/min to 73.2 ml/min, or modifying the catheter shape from straight to tortuous, did not significantly reduce cell count or viability. Cell count and viability remained stable for up to 5 hours when the cell solution was stored on ice. Mixing BM-hMSC-Delta-24 with clinical concentrations of Omnipaque, verapamil, and heparin prior to infusion did not alter cell count or viability. Transwell experiments demonstrated that the antiglioma activity of BM-hMSC-Delta-24 was maintained after infusion.CONCLUSIONSBM-hMSC-Delta-24 is compatible with a wide variety of microcatheters and medications commonly used in neuroendovascular therapy. Stem cell viability and viral agent activity do not appear to be affected by catheter configuration or injection velocity. Commercially available microcatheters can be used to deliver stem cell neurotherapeutics via intraarterial routes. |
Databáze: | OpenAIRE |
Externí odkaz: |