On average eccentricity of graphs
Autor: | Kinkar Ch. Das, A. Sinan Çevik, A. Dilek Maden, I. Naci Cangul |
---|---|
Přispěvatelé: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü., Cangül, İsmail Naci, ABA-6206-2020, J-3505-2017 |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Graph center
Science & technology - other topics 0211 other engineering and technologies General Physics and Astronomy Geometric-arithmetic index (GA1) 02 engineering and technology 010501 environmental sciences Atom-bond connectivity 01 natural sciences Graph Multidisciplinary sciences Eccentricity Combinatorics Alkanes 0105 earth and related environmental sciences Independence number Mathematics Discrete mathematics Energy Atom-bond connectivity index ( ABC) Mean value 021107 urban & regional planning Average eccentricity Vertex (geometry) Clique number Index Distances Unicyclic Graph Vertex Degree Graph energy Astrophysics::Earth and Planetary Astrophysics First Zagreb index |
Popis: | The eccentricity of a vertex is the maximum distance from it to any other vertex and the average eccentricity avec(G) of a graph G is the mean value of eccentricities of all vertices of G. In this paper we present some lower and upper bounds for the average eccentricity of a connected (molecular) graph in terms of its structural parameters such as number of vertices, diameter, clique number, independence number and the first Zagreb index. Also, we obtain a relation between average eccentricity and first Zagreb index. Moreover, we compare average eccentricity with graph energy, ABC index and index. Selçuk Üniversitesi |
Databáze: | OpenAIRE |
Externí odkaz: |