On average eccentricity of graphs

Autor: Kinkar Ch. Das, A. Sinan Çevik, A. Dilek Maden, I. Naci Cangul
Přispěvatelé: Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü., Cangül, İsmail Naci, ABA-6206-2020, J-3505-2017
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Popis: The eccentricity of a vertex is the maximum distance from it to any other vertex and the average eccentricity avec(G) of a graph G is the mean value of eccentricities of all vertices of G. In this paper we present some lower and upper bounds for the average eccentricity of a connected (molecular) graph in terms of its structural parameters such as number of vertices, diameter, clique number, independence number and the first Zagreb index. Also, we obtain a relation between average eccentricity and first Zagreb index. Moreover, we compare average eccentricity with graph energy, ABC index and index. Selçuk Üniversitesi
Databáze: OpenAIRE