On the limiting amplitude principle for the wave equation with variable coefficients

Autor: Arnold, Anton, Geevers, Sjoerd, Perugia, Ilaria, Ponomarev, Dmitry
Přispěvatelé: Vienna University of Technology (TU Wien), University of Vienna [Vienna], Analyse fonctionnelle pour la conception et l'analyse de systèmes (FACTAS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), St. Petersburg Department of V.A. Steklov Mathematical Institute (PDMI RAS), Steklov Mathematical Institute [Moscow] (SMI), Russian Academy of Sciences [Moscow] (RAS)-Russian Academy of Sciences [Moscow] (RAS)
Rok vydání: 2022
Předmět:
DOI: 10.48550/arxiv.2202.10105
Popis: In this paper, we prove new results on the validity of the limiting amplitude principle (LAP) for the wave equation with nonconstant coefficients, not necessarily in divergence form. Under suitable assumptions on the coefficients and on the source term, we establish the LAP for space dimensions 2 and 3. This result is extended to one space dimension with an appropriate modification. We also quantify the LAP and thus provide estimates for the convergence of the time-domain solution to the frequency-domain solution. Our proofs are based on time-decay results of solutions of some auxiliary problems. The obtained results are illustrated numerically on radially symmetric problems in dimensions 1,2 and 3.
Databáze: OpenAIRE