Radar rainfall: Separating signal and noise fields to generate meaningful ensembles

Autor: Daniel Sempere-Torres, Xavier Llort, Geoff Pegram
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica, Universitat Politècnica de Catalunya. Departament d'Enginyeria Hidràulica, Marítima i Ambiental, Universitat Politècnica de Catalunya. CRAHI - Centre de Recerca Aplicada en Hidrometeorologia
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Atmospheric Research
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 0169-8095
DOI: 10.1016/j.atmosres.2010.11.018
Popis: For the purpose of generating meaningful stochastic ensembles of radar estimates of rainfall, a relatively simple and objective method of separating a radar rainfall image into signal and noise is described. An alternative noise field, with the same spectrum as the original noise, can then be simulated and combined with the signal field of each successive image, to generate an ensemble member for performing sensitivity studies. The method is based on identifying the appropriate wavelength in the power spectrum which defines the variance threshold used to separate noise from signal. The algorithm is explained and figures illustrate the efficacy of the procedure.
Databáze: OpenAIRE