Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces

Autor: Xianzhe Dai, Yukai Sun
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Integrability and Geometry: Methods and Applications.
ISSN: 1815-0659
DOI: 10.3842/sigma.2020.068
Popis: Gromov asked if the bi-invariant metrics on a compact Lie group are extremal compared to any other metrics. In this note, we prove that the bi-invariant metrics on a compact connected semi-simple Lie group $G$ are extremal (in fact rigid) in the sense of Gromov when compared to the left-invariant metrics. In fact the same result holds for a compact connected homogeneous manifold $G/H$ with $G$ compact connect and semi-simple.
Databáze: OpenAIRE