Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces
Autor: | Xianzhe Dai, Yukai Sun |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Symmetry, Integrability and Geometry: Methods and Applications. |
ISSN: | 1815-0659 |
DOI: | 10.3842/sigma.2020.068 |
Popis: | Gromov asked if the bi-invariant metrics on a compact Lie group are extremal compared to any other metrics. In this note, we prove that the bi-invariant metrics on a compact connected semi-simple Lie group $G$ are extremal (in fact rigid) in the sense of Gromov when compared to the left-invariant metrics. In fact the same result holds for a compact connected homogeneous manifold $G/H$ with $G$ compact connect and semi-simple. |
Databáze: | OpenAIRE |
Externí odkaz: |