On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces

Autor: Abdelaziz Rhandi, Simona Fornaro
Rok vydání: 2013
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems. 33:5049-5058
ISSN: 1078-0947
DOI: 10.3934/dcds.2013.33.5049
Popis: In this paper we give sufficient conditions ensuring that the space of test functions $C_c^{\infty}(R^N)$ is a core for the operator $$L_0u=\Delta u-Mx\cdot \nabla u+\frac{\alpha}{|x|^2}u=:Lu+\frac{\alpha}{|x|^2}u,$$ and $L_0$ with domain $W_\mu^{2,p}(R^N)$ generates a quasi-contractive and positivity preserving $C_0$-semigroup in $L^p_\mu(R^N),\,1 < p < \infty$. Here $M$ is a positive definite $N\times N$ hermitian matrix and $\mu$ is the unique invariant measure for the Ornstein-Uhlenbeck operator $L$. The proofs are based on an $L^p$-weighted Hardy's inequality and perturbation techniques.
Databáze: OpenAIRE