Characterization of Diamond and Silicon Carbide Detectors With Fission Fragments
Autor: | M. L. Gallin-Martel, Y. H. Kim, L. Abbassi, A. Bes, C. Boiano, S. Brambilla, J. Collot, G. Colombi, T. Crozes, S. Curtoni, D. Dauvergne, C. Destouches, F. Donatini, L. Gallin-Martel, O. Ghouini, J. Y. Hostachy, Ł. W. Iskra, M. Jastrzab, G. Kessedjian, U. Köster, A. Lacoste, A. Lyoussi, S. Marcatili, J. F. Motte, J. F. Muraz, T. Nowak, L. Ottaviani, J. Pernot, A. Portier, W. Rahajandraibe, M. Ramdhane, M. Rydygier, C. Sage, A. Tchoualack, L. Tribouilloy, M. Yamouni |
---|---|
Přispěvatelé: | Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Laue-Langevin (ILL), ILL, Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Nanofab (Nanofab), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), AUTRES, Optique et microscopies (POM), Polish Academy of Sciences (PAN), Semi-conducteurs à large bande interdite (SC2G), ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), Nanofabrication (NEEL - Nanofab), Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN), Istituto Nazionale di Fisica Nucleare (INFN), Optique & Microscopies (NEEL - POM), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Semi-conducteurs à large bande interdite (NEEL - SC2G) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
Silicon Fission Physics::Instrumentation and Detectors QC1-999 Materials Science (miscellaneous) silicon carbide detectors Biophysics chemistry.chemical_element General Physics and Astronomy engineering.material 01 natural sciences radiation-hard detectors chemistry.chemical_compound solid-state detectors 0103 physical sciences Silicon carbide Physical and Theoretical Chemistry Mathematical Physics 010302 applied physics [PHYS]Physics [physics] fission fragment Spectrometer 010308 nuclear & particles physics business.industry Physics Detector pulse height defect Diamond Neutron temperature chemistry Ionization chamber heavy-ion detectors engineering Optoelectronics diamond detectors business |
Zdroj: | 'Frontiers in Physics ', vol: 9, pages: 732730-1-732730-19 (2021) Front.in Phys. Front.in Phys., 2021, 9, pp.732730. ⟨10.3389/fphy.2021.732730⟩ Frontiers in Physics Frontiers in Physics, Frontiers, 2021, 9, pp.732730. ⟨10.3389/fphy.2021.732730⟩ Frontiers in Physics, Vol 9 (2021) Frontiers in Physics, 2021, 9, pp.732730. ⟨10.3389/fphy.2021.732730⟩ |
ISSN: | 2296-424X |
DOI: | 10.3389/fphy.2021.732730 |
Popis: | International audience; Experimental fission studies for reaction physics or nuclear spectroscopy can profit from fast, efficient, and radiation-resistant fission fragment (FF) detectors. When such experiments are performed in-beam in intense thermal neutron beams, additional constraints arise in terms of target-detector interface, beam-induced background, etc. Therefore, wide gap semi-conductor detectors were tested with the aim of developing innovative instrumentation for such applications. The detector characterization was performed with mass- and energy-separated fission fragment beams at the ILL (Institut Laue Langevin) LOHENGRIN spectrometer. Two single crystal diamonds, three polycrystalline and one diamond-on-iridium as well as a silicon carbide detector were characterized as solid state ionization chamber for FF detection. Timing measurements were performed with a 500-µm thick single crystal diamond detector read out by a broadband amplifier. A timing resolution of ∼10.2 ps RMS was obtained for FF with mass A = 98 at 90 MeV kinetic energy. Using a spectroscopic preamplifier developed at INFN-Milano, the energy resolution measured for the same FF was found to be slightly better for a ∼50-µm thin single crystal diamond detector (∼1.4% RMS) than for the 500-µm thick one (∼1.6% RMS), while a value of 3.4% RMS was obtained with the 400-µm silicon carbide detector. The Pulse Height Defect (PHD), which is significant in silicon detectors, was also investigated with the two single crystal diamond detectors. The comparison with results from α and triton measurements enabled us to conclude that PHD leads to ∼50% loss of the initial generated charge carriers for FF. In view of these results, a possible detector configuration and integration for in-beam experiments has been discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |