Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites
Autor: | Michel Bornert, Camille Chateau, D. Caldemaison, Cédric Sauder, Jérôme Crépin, Lionel Gélébart |
---|---|
Přispěvatelé: | Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Navier (navier umr 8205), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS), Centre des Matériaux (CDM), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Centre des Matériaux (MAT), MINES ParisTech - École nationale supérieure des mines de Paris, École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris |
Rok vydání: | 2014 |
Předmět: |
Numerical algorithms
Materials science Fracture mechanisms 02 engineering and technology Ceramic matrix composite 01 natural sciences [PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] In-situ mechanical testing Matrix (mathematics) [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] 0103 physical sciences Ultimate tensile strength Ultimate failure Fiber Composite material 010302 applied physics Fiber pull-out Mechanical Engineering Ceramic material 021001 nanoscience & nanotechnology Condensed Matter Physics Characterization (materials science) Fiber-reinforced composite material Cracking Mechanics of Materials 0210 nano-technology |
Zdroj: | Journal of the Mechanics and Physics of Solids Journal of the Mechanics and Physics of Solids, 2014, 63, pp.298-319. ⟨10.1016/j.jmps.2013.09.001⟩ Journal of the Mechanics and Physics of Solids, Elsevier, 2014, 63, pp.298-319. ⟨10.1016/j.jmps.2013.09.001⟩ |
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2013.09.001 |
Popis: | International audience; The purpose of this paper is to experimentally validate a 1D probabilistic model of damage evolution in unidirectional SiC/SiC composites. The key point of this approach lies in the identification and validation at both local and macroscopic scales. Thus, in addition to macroscopic tensile tests, the evolution of microscopic damage mechanisms - in the form of matrix cracks and fiber breaks - is experimentally analyzed and quantified through in-situ scanning electron microscope and computed tomography tensile tests. A complete model, including both matrix cracking and fiber breaking, is proposed on the basis of existing modeling tools separately addressing these mechanisms. It is based on matrix and fiber failure probability laws and a stress redistribution assumption in the vicinity of matrix cracks or fiber breaks. The identification of interfacial parameters is conducted to fit the experimental characterization, and shows that conventional assumptions of 1D probabilistic models can adequately describe matrix cracking at both macro- and microscopic scales. However, it is necessary to enrich them to get a proper prediction of ultimate failure and fiber break density for Hi-Nicalon type S fiber-reinforced SiC/SiC minicomposites. |
Databáze: | OpenAIRE |
Externí odkaz: |