Evaluating the morphological competence of Machine Translation Systems

Autor: François Yvon, Franck Burlot
Přispěvatelé: dev.limsi, dev.limsi, Association for Computational Linguistics, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
Rok vydání: 2017
Předmět:
Zdroj: WMT
Proceedings of the Conference on Machine Translation (WMT)
2nd Conference on Machine Translation (WMT17)
2nd Conference on Machine Translation (WMT17), Association for Computational Linguistics, Sep 2017, Copenhague, Denmark. pp.43-55
DOI: 10.18653/v1/w17-4705
Popis: International audience; While recent changes in Machine Translation state-of-the-art brought translation quality a step further, it is regularly acknowledged that the standard automatic metrics do not provide enough insights to fully measure the impact of neural models. This paper proposes a new type of evaluation focused specifically on the morphological competence of a system with respect to various grammatical phenomena. Our approach uses automatically generated pairs of source sentences, where each pair tests one morphological contrast. This methodology is used to compare several systems submitted at WMT'17 for English into Czech and Latvian.
Databáze: OpenAIRE