A finite difference scheme for conservation laws driven by Lévy noise

0. Moreover, we show that the expected value of the L^1-difference between the approximate solution and the unique entropy solution converges at a rate O(\sqrt{\Dx}).
38 Pages -->
Jazyk: English
ISSN: 0272-4979
1464-3642
DOI: 10.1093/imanum/drx023⟩
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77c620e325b0aef4cb79c904c12b86d8
https://hal.archives-ouvertes.fr/hal-02134602
Rights: OPEN
Přírůstkové číslo: edsair.doi.dedup.....77c620e325b0aef4cb79c904c12b86d8
Autor: Ananta K. Majee, Guy Vallet, Ujjwal Koley
Přispěvatelé: Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2018, 38 (2), pp.998-1050. ⟨10.1093/imanum/drx023⟩
ISSN: 0272-4979
1464-3642
DOI: 10.1093/imanum/drx023⟩
Popis: In this paper, we analyze a semi-discrete finite difference scheme for a conservation laws driven by a homogeneous multiplicative Levy noise. Thanks to BV estimates, we show a compact sequence of approximate solutions, generated by the finite difference scheme, converges to the unique entropy solution of the underlying problem, as the spatial mesh size \Dx-->0. Moreover, we show that the expected value of the L^1-difference between the approximate solution and the unique entropy solution converges at a rate O(\sqrt{\Dx}).
38 Pages
Databáze: OpenAIRE