Aerosol persistence in relation to possible transmission of SARS-CoV-2

Autor: Lia van der Hoek, G. Aernout Somsen, Reinout A. Bem, Scott H. Smith, Stefan Kooij, Daniel Bonn, Cees J.M. van Rijn
Přispěvatelé: Medical Microbiology and Infection Prevention, AII - Infectious diseases, Paediatric Intensive Care, ARD - Amsterdam Reproduction and Development, IoP (FNWI), WZI (IoP, FNWI), Soft Matter (WZI, IoP, FNWI)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physics of Fluids, 32(10):107108. American Institute of Physics
Physics of Fluids, 32(10):107108. AIP Publishing
Physics of Fluids
ISSN: 1070-6631
Popis: Transmission of SARS-CoV-2 leading to COVID-19 occurs through exhaled respiratory droplets from infected humans. Currently, however, there is much controversy over whether respiratory aerosol microdroplets play an important role as a route of transmission. By measuring and modeling the dynamics of exhaled respiratory droplets, we can assess the relative contribution of aerosols to the spreading of SARS-CoV-2. We measure size distribution, total numbers, and volumes of respiratory droplets, including aerosols, by speaking and coughing from healthy subjects. Dynamic modeling of exhaled respiratory droplets allows us to account for aerosol persistence times in confined public spaces. The probability of infection by inhalation of aerosols when breathing in the same space can then be estimated using current estimates of viral load and infectivity of SARS-CoV-2. The current known reproduction numbers show a lower infectivity of SARS-CoV-2 compared to, for instance, measles, which is known to be efficiently transmitted through the air. In line with this, our study of transmission of SARS-CoV-2 suggests that aerosol transmission is a possible but perhaps not a very efficient route, in particular from non-symptomatic or mildly symptomatic individuals that exhibit low viral loads.
Databáze: OpenAIRE