Field-induced assembly of colloidal ellipsoids into well-defined microtubules

Autor: Per Linse, Jérôme J. Crassous, Jan Vermant, Adriana M. Mihut, Patrick Pfleiderer, Peter Schurtenberger, Erik Wernersson
Jazyk: angličtina
Rok vydání: 2014
Předmět:
NANOSTRUKTURIERTE MATERIALIEN (PHYSIK DER KONDENSIERTEN MATERIE)
Current (mathematics)
Field (physics)
General Physics and Astronomy
SELBSTORGANISATION (NANOSTRUKTURIERTE MATERIALIEN)
02 engineering and technology
010402 general chemistry
Curvature
NANOSTRUCTURED MATERIALS (CONDENSED MATTER PHYSICS)
Microtubules
01 natural sciences
Article
General Biochemistry
Genetics and Molecular Biology

KOLLOIDE UND DISPERSE SYSTEME (KOLLOIDCHEMIE)
Capsid
Electricity
Electric field
Colloids
COLLOIDS AND DISPERSE SYSTEMS (COLLOID CHEMISTRY)
Well-defined
Anisotropy
Engineering & allied operations
SELF-ORGANIZATION (NANOSTRUCTURED MATERIALS)
Physics
Multidisciplinary
General Chemistry
021001 nanoscience & nanotechnology
Ellipsoid
Nanostructures
0104 chemical sciences
Physical sciences
Condensed matter
Materials science

Dipole
Chemical physics
ddc:540
Biophysics
Capsid Proteins
ddc:620
0210 nano-technology
Zdroj: Nature Communications, 5
Nature Communications
ISSN: 2041-1723
Popis: Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures.
Nature Communications, 5
ISSN:2041-1723
Databáze: OpenAIRE