Thermal behavior of Pd@SiO 2 nanostructures in various gas environments: a combined 3D and in situ TEM approach

Autor: Mounib Bahri, Denis Uzio, Sébastien Valette, Walid Baaziz, Alexandra Chaumonnot, Ovidiu Ersen, Charles Hirlimann
Přispěvatelé: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), IFP Energies nouvelles (IFPEN), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Strasbourg (UNISTRA), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ANR-15-CE09-0009,3DCLEAN,Tri-Dimensionnel Nano-laboratoire catalytique environnemental(2015), ANR-15-CE39-0012,GraphTEX,Approche nanotechnologique innovante pour le développement de nouveaux textiles intélligents auto-detoxifiants contre les agents organophosphorés neurotoxiques de guerre et les pesticides(2015), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Belli, Catherine, Tri-Dimensionnel Nano-laboratoire catalytique environnemental - - 3DCLEAN2015 - ANR-15-CE09-0009 - AAPG2015 - VALID, Approche nanotechnologique innovante pour le développement de nouveaux textiles intélligents auto-detoxifiants contre les agents organophosphorés neurotoxiques de guerre et les pesticides - - GraphTEX2015 - ANR-15-CE39-0012 - AAPG2015 - VALID
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nanoscale
Nanoscale, Royal Society of Chemistry, 2018, 10 (43), pp.20178-20188. ⟨10.1039/c8nr06951d⟩
Nanoscale, 2018, 10 (43), pp.20178-20188. ⟨10.1039/c8nr06951d⟩
ISSN: 2040-3364
2040-3372
Popis: International audience; The thermal stability of core–shell Pd@SiO2 nanostructures was for the first time monitored by using in situ Environmental Transmission Electron Microscopy (E-TEM) at atmospheric pressure coupled with Electron Tomography (ET) on the same particles. The core Pd particles, with octahedral or icosahedral original shapes, were followed during thermal heating under gas at atmospheric pressure. In the first step, their morphology/faceting evolution was investigated in a reductive H2 environment up to 400 °C by electron tomography performed on the same particles before and after the in situ treatment. As a result, we observed the formation of small Pd particles inside the silica shell due to the thermally activated diffusion from the core particle. A strong dependence of the shape and faceting transformations on the initial structure of the particles was evidenced. The octahedral monocrystalline NPs were found to be less stable than the icosahedral ones; in the first case, the Pd diffusion from the core towards the silica external surface led to a progressive decrease of the particle size. The icosahedral polycrystalline NPs do not exhibit a morphology/faceting change, as in this case the atom diffusion within the particle is favored against diffusion towards the silica shell, due to a high amount of crystallographic defects in the particles. In the second part, the Pd@SiO2 NPs behavior at high temperatures (up to 1000 °C) was investigated under reductive or oxidative conditions; it was found to be strongly related to the thermal evolution of the silica shell: (1) under H2, the silica is densified and loses its porous structure leading to a final state with Pd core NPs encapsulated in the shell; (2) under air, the silica porosity is maintained and the increase of the temperature leads to an enhancement of the diffusion mechanism from the core towards the external surface of the silica; as a result, at 850 °C all the Pd atoms are expelled outside the silica shell.
Databáze: OpenAIRE