Identifying the energy release site in a solar microflare with a jet

Autor: Andrea Francesco Battaglia, Wen Wang, Jonas Saqri, Tatiana Podladchikova, Astrid M. Veronig, Hannah Collier, Ewan C. M. Dickson, Olena Podladchikova, Christian Monstein, Alexander Warmuth, Frédéric Schuller, Louise Harra, Säm Krucker
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Astronomy & Astrophysics, 670
ISSN: 0004-6361
1432-0746
Popis: Context. One of the main science questions of the Solar Orbiter and Parker Solar Probe missions deals with understanding how electrons in the lower solar corona are accelerated and how they subsequently access interplanetary space. Aims. We aim to investigate the electron acceleration and energy release sites as well as the manner in which accelerated electrons access the interplanetary space in the case of the SOL2021-02-18T18:05 event, a GOES A8 class microflare associated with a coronal jet. Methods. This study takes advantage of three different vantage points, Solar Orbiter, STEREO-A, and Earth, with observations drawn from eight different instruments, ranging from radio to X-ray. Multi-wavelength timing analysis combined with UV/EUV imagery and X-ray spectroscopy by Solar Orbiter/STIX (Spectrometer/Telescope for Imaging X-rays) is used to investigate the origin of the observed emission during different flare phases. Results. The event under investigation satisfies the classical picture of the onset time of the acceleration of electrons coinciding with the jet and the radio type III bursts. This microflare features prominent hard X-ray (HXR) nonthermal emission down to at least 10 keV and a spectrum that is much harder than usual for a microflare with γ = 2.9 ± 0.3. From Eartha's vantage point, the microflare is seen near the limb, revealing the coronal energy release site above the flare loop in EUV, which, from STIX spectroscopic analysis, turns out to be hot (i.e., at roughly the same temperature of the flare). Moreover, this region is moving toward higher altitudes over time (∼30akmas-1). During the flare, the same region spatially coincides with the origin of the coronal jet. Three-dimensional (3D) stereoscopic reconstructions of the propagating jet highlight that the ejected plasma moves along a curved trajectory. Conclusions. Within the framework of the interchange reconnection model, we conclude that the energy release site observed above-The-loop corresponds to the electron acceleration site, corroborating that interchange reconnection is a viable candidate for particle acceleration in the low corona on field lines open to interplanetary space.
Astronomy & Astrophysics, 670
ISSN:0004-6361
ISSN:1432-0746
Databáze: OpenAIRE