Laminated Organic Photovoltaic Modules for Agrivoltaics and Beyond: An Outdoor Stability Study of All‐Polymer and Polymer:Small Molecule Blends

Autor: Xabier Rodríguez‐Martínez, Sergi Riera‐Galindo, Luis Ever Aguirre, Mariano Campoy‐Quiles, Hans Arwin, Olle Inganäs
Přispěvatelé: Knut and Alice Wallenberg Foundation, European Commission, Ministerio de Ciencia e Innovación (España), Ministerio de Ciencia, Innovación y Universidades (España)
Rok vydání: 2022
Předmět:
Zdroj: Advanced Functional Materials. 33:2213220
ISSN: 1616-3028
1616-301X
Popis: The integration of organic photovoltaic (OPV) modules on greenhouses is an encouraging practice to offset the energy demands of crop growth and provide extra functionality to dedicated farmland. Nevertheless, such OPV devices must meet certain optical and stability requirements to turn net zero energy greenhouse systems a reality. Here a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. Optical modeling is performed and a greenhouse figure-of-merit is introduced to benchmark the trade-off between photovoltaic performance and transparency for both chloroplasts and humans. Balanced donor:acceptor ratios result in better-performing and more thermally stable devices than acceptor-enriched counterparts. The optimized polymer blend and state-of-the-art polymer:small-molecule blends are next transferred to 25 cm2 laminated modules processed entirely from solution and in ambient conditions. The modules are mounted on a greenhouse as standalone or 4-terminal tandem configurations and their outdoor stability is tracked for months. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10–20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated OPV systems.
X.R.-M., S.R.-G., and O.I. acknowledge the Knut and Alice Wallenberg Foundation for funding. S.R.-G. is thankful to the Marie Sklodowska-Curie Actions (H2020-MSCA-IF-2020) for grant agreement No. 101025608, IDEAL. The authors acknowledge Dr. Bernhard Dörling for building the electronic controller of the accelerated blade coater and Dr. M. Gibert-Roca for designing the corresponding multiplexor. M.C.-Q. thanks to the Spanish Ministry of Science and Innovation for funding through ISOSCELLES project (PID2021-128924OB-I00). The table of contents figure contains freely available resources from https://flaticon.com.
Databáze: OpenAIRE