$M(\eta_{b})$ and $\alpha_{s}$ from nonrelativistic renormalization group
Autor: | Kniehl, Bernd A., Penin, Alexander A., Pineda, Antonio, Smirnov, Vladimir A., Steinhauser, Matthias |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2003 |
Předmět: |
renormalization group: nonrelativistic
High Energy Physics::Lattice Nuclear Theory High Energy Physics::Phenomenology nonrelativistic [renormalization group] XX mass [eta/b] High Energy Physics - Experiment numerical calculations: interpretation of experiments High Energy Physics - Phenomenology quarkonium: heavy quarkonium: hyperfine structure High Energy Physics - Lattice strong interaction: coupling constant interpretation of experiments [numerical calculations] ddc:550 leading logarithm approximation: correction eta/b: mass High Energy Physics::Experiment heavy [quarkonium] hyperfine structure [quarkonium] Nuclear Experiment coupling constant [strong interaction] correction [leading logarithm approximation] |
Zdroj: | Physical review letters 92(24), 242001 (2004). doi:10.1103/PhysRevLett.92.242001 |
DOI: | 10.1103/PhysRevLett.92.242001 |
Popis: | Physical review letters 92(24), 242001 (2004). doi:10.1103/PhysRevLett.92.242001 We sum up the next-to-leading logarithmic corrections to the heavy-quarkonium hyperfine splitting using the nonrelativistic renormalization group. On the basis of this result, we predict the mass of the $\eta_b$ meson to be $M(\eta_b)=9419 \pm 11 {(\rm th)} {}^{+9}_{-8} (\delta\alpha_s) MeV$. The experimental measurement of $M(\eta_b)$ with a few MeV error would be sufficient to determine $\alpha_s(M_Z)$ with an accuracy of $\pm 0.003$. The use of the nonrelativistic renormalization group is mandatory to reproduce the experimental value of the hyperfine splitting in charmonium. Published by APS, College Park, Md. |
Databáze: | OpenAIRE |
Externí odkaz: |