Adaptive Feature and Score Level Fusion Strategy using Genetic Algorithms

Autor: Mohsen Ardabilian, Chokri Ben Amar, Wael Ben Soltana, Liming Chen
Přispěvatelé: Extraction de Caractéristiques et Identification (imagine), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), REsearch Group in Intelligent Machines [Sfax] (REGIM-Lab), École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS), SI LIRIS, Équipe gestionnaire des publications
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: International Conference on Pattern recognition (ICPR)
International Conference on Pattern recognition (ICPR), Aug 2010, Istanbul, Turkey. pp.4316-4319
ICPR
Popis: International audience; Classifier fusion is considered as one of the best strategies for improving performances upon general purpose classification systems. On the other hand, fusion strategy space strongly depends on classifiers, features and data spaces. As the cardinality of this space is exponential, one needs to resort to a heuristic to find out a sub-optimal fusion strategy. In this work, we present a new adaptive feature and score level fusion strategy (AFSFS) based on adaptive genetic algorithm. AFSFS tunes itself between feature and matching score levels, and improves the final performance over the original on two levels, and as a fusion method, not only it contains fusion strategy to combine the most relevant features so as to achieve adequate and optimized results, but also has the extensive ability to select the most discriminative features. Experiments are provided on the FRGC database and show that the proposed method produces significantly better results than the baseline fusion methods.
Databáze: OpenAIRE