The redox couple of the cytochrome c cyanide complex: The contribution of heme iron ligation to the structural stability, chemical reactivity, and physiological behavior of horse cytochrome c
Autor: | Benjamin A. Feinberg, Erica R. Blizzard, Emanuel Margoliash, Chongyao Zhang, Abel Schejter, Michael D. Ryan |
---|---|
Rok vydání: | 2006 |
Předmět: |
Hemeprotein
Cytochrome Protein Conformation Entropy Iron Cyanide Static Electricity Inorganic chemistry Heme Biochemistry Redox Medicinal chemistry Article chemistry.chemical_compound medicine Animals Horses Molecular Biology Cyanides biology Cytochrome c Cytochromes c Binding constant chemistry biology.protein Thermodynamics Ferric Oxidation-Reduction medicine.drug |
Zdroj: | Protein Science. 15:234-241 |
ISSN: | 1469-896X 0961-8368 |
DOI: | 10.1110/ps.051825906 |
Popis: | Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |