Culler-Shalen seminorms of fillings of the Whitehead link exterior
Autor: | Gabriel Indurskis |
---|---|
Rok vydání: | 2020 |
Předmět: |
Polynomial (hyperelastic model)
Pure mathematics Whitehead link Geometric Topology (math.GT) Mathematics - Geometric Topology Boundary component FOS: Mathematics Pi Peripheral subgroup Variety (universal algebra) Parametrization 57M27 (Primary) 20C15 57N10 57R65 (Secondary) Eigenvalues and eigenvectors Mathematics |
Zdroj: | Characters in Low-Dimensional Topology. :167-205 |
ISSN: | 1098-3627 0271-4132 |
DOI: | 10.1090/conm/760/15291 |
Popis: | We determine the total Culler-Shalen seminorms for the 3-manifolds W_{p/q}:=W(p/q,-) obtained by Dehn filling with slope p/q on one boundary component of the Whitehead link exterior W when p is odd. As part of the proof, we use an explicit parametrization of the eigenvalue variety of W to find a one-variable polynomial whose roots characterize characters of p-reps of \pi_{1}(W_{p/q}), i.e. representations with values in SL_2(C) which are parabolic on the peripheral subgroup. Comment: 34 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |