Improving Electroactivity of N-Doped Graphene Derivatives with Electrical Induction Heating
Autor: | Miha Nosan, Luka Pavko, Matjaž Finšgar, Mitja Kolar, Boštjan Genorio |
---|---|
Rok vydání: | 2022 |
Předmět: |
oxygen reduction reaction
udc:620.3 reaction products N-doped graphene nanoribbons Energy Engineering and Power Technology electrolytes induction heating N-doped graphene materials visoka specifična površina z dušikom dopiran grafen reakcija redukcije kisika redox reactions z dušikom dopirani nanotrakovi Materials Chemistry Electrochemistry high specific surface area electrocatalysis Chemical Engineering (miscellaneous) elektrokataliza Electrical and Electronic Engineering two dimensional materials |
Zdroj: | ACS applied energy materials, vol. 5, no. 8, pp. 9571-9580, 2022. |
ISSN: | 2574-0962 |
DOI: | 10.1021/acsaem.2c01184 |
Popis: | Graphene derivatives doped with nitrogen have already been identified as active non-noble metal materials for oxygen reduction reaction (ORR) in PEM and alkaline fuel cells. However, an efficient and scalable method to prepare active, stable, and high-surface-area non-noble metal catalysts remains a challenge. Therefore, an efficient, potentially scalable strategy to improve the specific surface area of N-doped graphene derivatives needs to be developed. Here, we report a novel, rapid, and scalable electrical induction heating method for the preparation of N-doped heat-treated graphene oxide derivatives (N-htGOD) with a high specific surface area. The application of the induction heating method has been shown to shorten the reaction time and improve the energy efficiency of the process. The materials synthesized by induction heating exhibited very high specific surface area and showed improved ORR activity compared to the conventional synthesis method. Moreover, we demonstrated that the temperature program of induction heating could fine-tune the concentration of nitrogen functionalities. In particular, the graphitic-N configuration increases with increasing final temperature, in parallel with the increasing ORR activity. The presented results will contribute to the understanding and development of nonmetal N-htGOD for energy storage and conversion applications. |
Databáze: | OpenAIRE |
Externí odkaz: |