Submicrometer Top-Gate Self-Aligned a-IGZO TFTs by Substrate Conformal Imprint Lithography
Autor: | Thijs Bel, Gerwin H. Gelinck, Laura De Kort, Roy Verbeek, Joris de Riet, Mamidala Saketh Ram, Auke Jisk Kronemeijer |
---|---|
Přispěvatelé: | Molecular Materials and Nanosystems |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Materials science
Lithography Thin films nanoimprint Field effect transistors 01 natural sciences Nanoimprint lithography law.invention Amorphous indium gallium zinc oxides (a igzo) law self-aligned thin-film transistors (SA TFTs) 0103 physical sciences Zinc oxide Electrical and Electronic Engineering Thin film 010302 applied physics Nano-imprint Dopant business.industry roll to roll Transistor Gallium compounds Amorphous semiconductors Thin film transistors II-VI semiconductors Semiconducting indium compounds Thin film circuits Electronic Optical and Magnetic Materials Resist Imprint lithography Thin-film transistor Amorphous indium gallium zinc oxide (a-IGZO) Self-aligned Optoelectronics Field-effect transistor substrate conformal imprint lithography (SCIL) business Amorphous films |
Zdroj: | IEEE Transactions on Electron Devices, 4, 66, 1778-1782 IEEE Transactions on Electron Devices, 66(4):8653974, 1778-1782. Institute of Electrical and Electronics Engineers |
ISSN: | 0018-9383 |
Popis: | Thin-film transistors (TFTs) are the fundamental building blocks of today’s display industry. To achieve higher drive currents and device density, it is essential to scale down the channel lengths of TFTs. To be able to fabricate short-channel TFTs in large volumes is also equally important in order to realize lower fabrication costs and higher throughput. In this paper, we demonstrate the application of substrate conformal imprint lithography (SCIL) to pattern top-gate (TG) self-aligned (SA) amorphous indium gallium zinc oxide TFTs down to channel length ${L}_{\textsf {G}} = \textsf {450}$ nm with good device scaling properties resulting in average field-effect mobility ( ${\mu }_{FE}$ ) $= \sim 10$ cm $^{\textsf {2}}\cdot \text{V}^{-\textsf {1}}\cdot \text{s}^{\textsf {-1}}$ , ${V}_{\mathrm{ON}} = \,\sim 0.5$ V, and subthreshold swing (SS) $= \sim 0.3$ V/decade. The device performance as a function of channel length outlines the importance of dopant diffusion control for realizing submicrometer SA TFTs. The results demonstrate the compatibility of SCIL-based large-area patterning for the realization of submicrometer TG SA TFTs with a potential for high throughput. |
Databáze: | OpenAIRE |
Externí odkaz: |