Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology
Autor: | Fons Marcelis, Paul F. Luckham, Apostolos Georgiadis, M. Rücker, Steffen Berg, Sherifat Yesufu-Rufai, Johannes N. M. van Wunnik |
---|---|
Rok vydání: | 2020 |
Předmět: |
ADSORPTION
SURFACE Iron oxide Context (language use) Sandstone 02 engineering and technology ADHESION 010402 general chemistry 01 natural sciences Redox 09 Engineering Atomic force microscopy chemistry.chemical_compound Colloid and Surface Chemistry DISSOLUTION SALINITY CRUDE-OIL RETENTION Enhanced oil recovery Dissolution Science & Technology Chemical Physics 02 Physical Sciences Mineral Chemistry Physical Chemistry IRON Adhesion 021001 nanoscience & nanotechnology 0104 chemical sciences REDUCTION Chemical engineering MICA Physical Sciences Wettability Wetting 03 Chemical Sciences 0210 nano-technology |
Zdroj: | Colloids and Surfaces A: Physicochemical and Engineering Aspects. 597:124765 |
ISSN: | 0927-7757 |
Popis: | Laboratory core flood experiments performed to establish chemical enhanced oil recovery (cEOR) procedures often make use of rock samples that deviate from prevailing conditions within the reservoir. These samples have usually been preserved in an uncontrolled oxidising environment in contrast to reducing reservoir conditions, a discrepancy that affects rock wettability and thus oil recovery. The use of a reducing fluid is a predominant method, particularly regarding iron-bearing minerals, for restoring these samples to representative redox states. In this study, the adhesion of polar ( NH2 and COOH) and non-polar ( CH3) crude oil components to the pore surfaces of Bandera Brown, an outcrop of similar mineralogy to reservoir sandstones, was investigated using Atomic Force Microscopy to determine the potential of a reducing fluid of Sodium Dithionite in seawater to alter surface wettability. This novel workflow for the observation of redox condition effects illuminates the nanoscopic interaction forces at the rock/fluid interface responsible this phenomenon. The results obtained show that adhesion forces between the oil components and the Bandera Brown surface after treatment with the reducing fluid decreased in the order: NH2 (∼70 %) > COOH (∼36 %) > CH3 (∼3 %), due to diminishing affinity of the surface for the polar functional groups when the oxidation state of iron was altered from iron III to iron II. The morphology of Bandera Brown is noted to be affected as well with some dissolution of the mineral composition within cemented pores observed. The results demonstrate that redox state is indeed important for the assessment of wetting properties of surfaces as measurements performed in oxidising environments may not be representative of reservoir reducing conditions. Also, complete reduction of iron oxides on the mineral surfaces seems unlikely without altering the prevailing pore structure. These findings have relevance not only in EOR cases but can find applicability in a much wider context including remediation studies, in particular when iron is present. |
Databáze: | OpenAIRE |
Externí odkaz: |