Multiple instance learning: A survey of problem characteristics and applications
Autor: | Ghyslain Gagnon, Marc-André Carbonneau, Veronika Cheplygina, Eric Granger |
---|---|
Přispěvatelé: | Medical Informatics, Medical Image Analysis |
Rok vydání: | 2018 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Artificial Intelligence Computer science Drug activity prediction Computer Vision and Pattern Recognition (cs.CV) Computer Science - Computer Vision and Pattern Recognition 02 engineering and technology computer.software_genre Machine learning Computer Science - Information Retrieval Document classification Artificial Intelligence 020204 information systems 0202 electrical engineering electronic engineering information engineering Leverage (statistics) Instance-based learning business.industry Weakly supervised learning Multiple instance learning Supervised learning Classification Multi-instance learning Computer aided diagnosis machine learning Artificial Intelligence (cs.AI) Signal Processing Labeled data 020201 artificial intelligence & image processing Computer vision Computer Vision and Pattern Recognition Artificial intelligence business computer Software Information Retrieval (cs.IR) |
Zdroj: | Pattern Recognition, 77, 329-353. Elsevier Ltd. Pattern Recognition, 77, 329-353. Elsevier |
ISSN: | 0031-3203 |
Popis: | Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research. Code is available on-line at https://github.com/macarbonneau/MILSurvey. |
Databáze: | OpenAIRE |
Externí odkaz: |