Soft contribution to the damping rate of a hard photon in a weakly magnetized hot medium

Autor: Munshi G. Mustafa, Bithika Karmakar, Ritesh Ghosh
Rok vydání: 2020
Předmět:
Zdroj: Physical Review D. 101
ISSN: 2470-0029
2470-0010
DOI: 10.1103/physrevd.101.056007
Popis: We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damped in this medium via Compton scattering and pair creation process. We evaluate the damping rate of hard photon by calculating the imaginary part of the each transverse dispersive modes in a thermo-magnetic QED medium. We note that one of the fermions in the loop of one-loop photon self-energy is considered as soft and the other one is hard. Considering the resummed fermion propagator in a weakly magnetized medium for the soft fermion and the Schwinger propagator for hard fermion, we calculate the soft contribution to the damping rate of hard photon. In weak field approximation the thermal and thermo-magnetic contributions to damping rate get separated out for each transverse dispersive mode. The total damping rate for each dispersive mode in presence of magnetic field is found to be reduced than that of the thermal one. This formalism can easily be extended to QCD plasma.
32 pages, 7 figures
Databáze: OpenAIRE