Soft contribution to the damping rate of a hard photon in a weakly magnetized hot medium
Autor: | Munshi G. Mustafa, Bithika Karmakar, Ritesh Ghosh |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Quantum chromodynamics Coupling constant Photon Nuclear Theory 010308 nuclear & particles physics High Energy Physics - Lattice (hep-lat) Compton scattering FOS: Physical sciences Propagator Electron Fermion 01 natural sciences Magnetic field Nuclear Theory (nucl-th) High Energy Physics - Phenomenology High Energy Physics - Phenomenology (hep-ph) High Energy Physics - Lattice Quantum electrodynamics 0103 physical sciences 010306 general physics |
Zdroj: | Physical Review D. 101 |
ISSN: | 2470-0029 2470-0010 |
DOI: | 10.1103/physrevd.101.056007 |
Popis: | We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damped in this medium via Compton scattering and pair creation process. We evaluate the damping rate of hard photon by calculating the imaginary part of the each transverse dispersive modes in a thermo-magnetic QED medium. We note that one of the fermions in the loop of one-loop photon self-energy is considered as soft and the other one is hard. Considering the resummed fermion propagator in a weakly magnetized medium for the soft fermion and the Schwinger propagator for hard fermion, we calculate the soft contribution to the damping rate of hard photon. In weak field approximation the thermal and thermo-magnetic contributions to damping rate get separated out for each transverse dispersive mode. The total damping rate for each dispersive mode in presence of magnetic field is found to be reduced than that of the thermal one. This formalism can easily be extended to QCD plasma. 32 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |