[Development of a portable micro-liquid chromatograph]
Autor: | Qiang Fu, Limin Yang, Qiuquan Wang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Flash-lamp
Monolithic HPLC column Chromatography Optical fiber Spectrometer Chemistry Polymers General Chemical Engineering Organic Chemistry Biochemistry Ray Analytical Chemistry law.invention Lens (optics) law Electrochemistry Light beam Light emission Indicators and Reagents Chromatography High Pressure Liquid Chromatography Liquid |
Zdroj: | Se pu = Chinese journal of chromatography. 39(9) |
ISSN: | 1000-8713 |
Popis: | Portable analytical instruments find extensive application in on-site examination because of their significant advantages: these instruments are convenient and easy-to-carry, leading to high time-effectiveness, and involve low reagent consumption. We report a portable micro-liquid chromatograph (p-μLC) that was designed and fabricated in our laboratory. The p-μLC integrates homemade dual large-thrust syringe pumps for delivering the mobile phase, a capillary polymer monolithic column as the stationary phase for the separation of the target analytes, and a specially designed dual-functional optical-fiber microflow-cell for online detection. The dual-thrust syringe pumps can realize isocratic and/or gradient elution as well as reloading of the mobile phase, with flow rates ranging from 0.025 μL/min to 5.6 mL/min and the maximum working pressure of 4.5 MPa. The polymethacrylate based C-18 monolithic column facilitates the separation of small organic molecules and biomacromolecules. A homemade high-power light emission diode (LED) light source and a modified xenon flash lamp are assembled as the light source module. The dual-functional detector consists of an optical fiber microflow-cell with a self-focusing lens and a light-guiding capillary, light source module, and a small-sized grating spectrometer with an output wavelength range of 400-680 nm for the LED light source and 220-700 nm for the xenon flash lamp, enabling online detection of the absorption and fluorescence spectra of the analytes from 220 to 700 nm. A bifurcated optical fiber bundle is prepared and used to connect the light source, microflow-cell, and grating spectrometer so that the incident light leading-in and the fluorescence/scatting light leading-out can be realized simultaneously. The junction end of the bifurcated optical fiber bundles connects to one end of the light path of the microflow-cell, and a straight-through optical fiber connects another end of the microflow-cell. In the UV-Vis absorption mode, the straight-through optical fiber reads out the transmitted light, while in the fluorescence mode, the excitation light beam from the light source irradiates the sample solution in the flow-cell via one branch of the bifurcated optic fiber bundles. The fluorescence leading-out via the other branch of the bifurcated optical fiber bundles in the opposite direction of the excitation light beam is read out by the spectrometer. All the large-thrust syringe pumps and flow-path, capillary monolithic column, and optical fiber mediated flow-cell detection as well as controlling modules are installed in a suitcase with a total weight of less than 8 kg. The p-μLC is powered by DC 12V 3A or 18650 lithium battery pack and controlled by a panel computer with a custom-built windows-based chromatography workstation software for data acquisition. When using the home-made polymethacrylate based C-18 monolithic capillary column (530 μm ID×200 mm in length), the mixed alkylbenzenes can be separated and detected in an isocratic elution mode. The separation efficiency is comparable to that obtained with a commercially available HPLC. |
Databáze: | OpenAIRE |
Externí odkaz: |