Identification of Fkh1 and Fkh2 binding site variants associated with dynamically bound DNA elements including replication origins

Autor: A. Zachary Ostrow, Oscar M. Aparicio
Rok vydání: 2017
Předmět:
Zdroj: Nucleus
ISSN: 1949-1042
1949-1034
DOI: 10.1080/19491034.2017.1380139
Popis: Forkhead Box (Fox) DNA binding proteins control multiple genome activities, including transcription, replication, and repair. These activities are organized spatially and temporally in the nucleus, and Fox proteins Fkh1 and Fkh2 have emerged as regulators of long-range chromosomal interactions involved with these activities, such as the clustering of replication origins programmed for early initiation. Fkh1 and Fkh2 bind a subset of replication origins and are thought to dimerize to mediate long-range chromosomal contacts between these origins. The binding of Fkh1 and/or Fkh2 (Fkh1/2) to replication origins and the recombination enhancer (RE), which is involved in DNA repair required for mating-type switching, is cell cycle-regulated and thus appears to be more dynamic than Fkh1/2 binding at regulated target genes. Here we report the identification of Fkh1/2 binding sequence variants at replication origins and the RE compared with Fkh1/2 binding sequences found at target genes of the CLB2 group. These different binding sequences have previously been characterized as weak and strong, respectively, suggesting that the presence of weak sites contributes to more dynamic interactions at replication origins and RE, possibly facilitated by Fkh1/2 dimerization and cooperative interactions with accessory proteins. We discuss the wealth of regulatory potential imbued in these features of the DNA and its binding proteins.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje