Denoising Smooth Signals Using a Bayesian Approach: Application to Altimetry

Autor: Paul Honeine, Abderrahim Halimi, Stephen McLaughlin, Gerald S. Buller
Přispěvatelé: Heriot-Watt University [Edinburgh] (HWU), Equipe Apprentissage (DocApp - LITIS), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Honeine, Paul
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Atmospheric Science
denoising quality
signal denoising
Gaussian
Bayesian inference
posterior distribution
coordinate descent algorithm (CDA)
gamma Markov random fields (gamma-MRFs)
Geophysics. Cosmic physics
0211 other engineering and technologies
02 engineering and technology
computer.software_genre
gamma Markov random field
altimetric parameter quality
0202 electrical engineering
electronic engineering
information engineering

Coordinate descent
Noise reduction
state-of-the-art algorithms
computational cost
Mathematics
synthetic signal
Markov random field
Noise (signal processing)
Estimation theory
Markov processes
Computational modeling
Bayes methods
denoising smooth signals
Correlation
Ocean engineering
height measurement
random processes
symbols
020201 artificial intelligence & image processing
smooth evolution
Altimetry
parameter estimation
Algorithm
Bayesian strategy
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
signal energies
noise variances
Satellites
Posterior probability
Machine learning
Gaussian noise
Bayesian algorithm
symbols.namesake
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
satellite altimetric data
Computers in Earth Sciences
smooth signals estimation
TC1501-1800
[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
021101 geological & geomatics engineering
business.industry
QC801-809
Bayesian approach
fast coordinate descent algorithm
statistical distributions
Logic gates
[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
noise Gaussian properties
real signal
smoothing methods
continuous signals
classification strategy
Artificial intelligence
business
Signal processing algorithms
computer
successive signals
Zdroj: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 10, Iss 4, Pp 1278-1289 (2017)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2017, 10 (4), pp.1278-1289
ISSN: 2151-1535
1939-1404
Popis: This paper presents a novel Bayesian strategy for the estimation of smooth signals corrupted by Gaussian noise. The method assumes a smooth evolution of a succession of continuous signals that can have a numerical or an analytical expression with respect to some parameters. The proposed Bayesian model takes into account the Gaussian properties of the noise and the smooth evolution of the successive signals. In addition, a gamma Markov random field prior is assigned to the signal energies and to the noise variances to account for their known properties. The resulting posterior distribution is maximized using a fast coordinate descent algorithm whose parameters are updated by analytical expressions. The proposed algorithm is tested on satellite altimetric data demonstrating good denoising results on both synthetic and real signals. In comparison with state-of-the-art algorithms, the proposed strategy provides a good compromise between denoising quality and necessary reduced computational cost. The proposed algorithm is also shown to improve the quality of the altimetric parameters when combined with a parameter estimation or a classification strategy.
Databáze: OpenAIRE