Submanifolds with nonpositive extrinsic curvature
Autor: | Samuel Canevari, Fernando Manfio, Guilherme Machado de Freitas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Hessian matrix
Mathematics - Differential Geometry Work (thermodynamics) Applied Mathematics 010102 general mathematics Mathematical analysis Codimension Radius Curvature 01 natural sciences symbols.namesake Maximum principle Differential Geometry (math.DG) Bounded function 0103 physical sciences symbols FOS: Mathematics GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA 010307 mathematical physics Mathematics::Differential Geometry 0101 mathematics Mathematics::Symplectic Geometry Mathematics |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
Popis: | We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature. 20 pages. arXiv admin note: text overlap with arXiv:0907.5025 by other authors |
Databáze: | OpenAIRE |
Externí odkaz: |