Low cost 3D printable flow reactors for electrochemistry

Autor: Erin Heeschen, Elena DeLucia, Yilmas Arin Manav, Daisy Roberts, Benyamin Davaji, Magda Barecka
Jazyk: angličtina
Rok vydání: 2023
Předmět:
ISSN: 1064-3389
DOI: 10.5281/zenodo.7992148
Popis: Reducing carbon emissions to mitigate the severity of climate change is at the forefront of sustainability- and is a popular topic for electrochemical laboratories around the world. The fields of CO2 electrolysis and hydrogen evolution provided over 500,000 publications in 2022 alone, but the number of laboratories able to conduct research in these fields is limited by experimental price. The primary piece of equipment for CO2 electrolysis and hydrogen evolution is a metallic flow cell, commercially available for $6,050. To increase research accessibility in the field of electrochemistry, we provide a 3D-printable flow cell for ~22.1% the market price. This model offers a customizable alternative to commercially available flow cells, providing researchers with more control over their experiments. By offering a low-cost alternative to metallic flow cells, the field of sustainable electrochemistry is available to new laboratories.
MHB acknowledges the start-up funding provided by Northeastern University (Boston).
{"references":["M. Lee, K. T. Park, W. Lee, H. Lim, Y. Kwon, S. Kang, Current Achievements and the Future Direction of Electrochemical CO2 Reduction: A Short Review. Critical Reviews in Environmental Science and Technology, 50(8) (2020). https://doi.org/10.1080/10643389.2019.1631991.","J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K. Wong. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 120(2) (2020). https://doi.org/10.1021/acs.chemrev.9b00248.","J.F. Sargent, R. X. Schwartz. 3D Printing: Overview, Impacts, and the Federal Role. https://sgp.fas.org/crs/misc/R45852.pdf , 2019 (accessed 05.31.2023)","A.B. Navarro, A. Nogalska, and R. Garcia-Valls. A 3D Printed Membrane Reactor System for Electrochemical CO2 Conversion. Membranes 13(1) (2023). https://doi.org/10.3390/membranes13010090.","M. Sassenburg, R. Rooij, N. T. Nesbitt, R. Kas, S. Chandrashekar, N. J. Firet, K. Yang, et al. Characterizing CO2 Reduction Catalysts on Gas Diffusion Electrodes: Comparing Activity, Selectivity, and Stability of Transition Metal Catalysts. ACS Applied Energy Materials 5(5) (2022). https://doi.org/10.1021/acsaem.2c00160.","T. Burdyny, W. A. Smith. CO2 Reduction on Gas-Diffusion Electrodes and Why Catalytic Performance Must Be Assessed at Commercially-Relevant Conditions. Energy & Environmental Science 12(5) (2019). https://doi.org/10.1039/C8EE03134G.","O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. Lagemaat, S. O. Kelley, E. H. Sargent. What Should We Make with CO2 and How Can We Make It? Joule 2(5) (2018). https://doi.org/10.1016/j.joule.2017.09.003.","F. P. de Arquer, C. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D. Nam, et al. CO2 Electrolysis to Multicarbon Products at Activities Greater than 1 A Cm−2. Science 367(6478) (2020). https://doi.org/10.1126/science.aay4217.","M. H. Barecka, J. W. Ager. Towards an Accelerated Decarbonization of the Chemical Industry by Electrolysis. Energy Advances 2(2) (2023). https://doi.org/10.1039/D2YA00134A.","M. H. Barecka, J. W. Ager, A. A. Lapkin. Carbon Neutral Manufacturing via On-Site CO2 Recycling. Science 24(6) (2021). https://doi.org/10.1016/j.isci.2021.102514.","N. Tanbouza, T. Ollevier, K. Lam. Bridging Lab and Industry with Flow Electrochemistry. Science 23(11) (2020). https://doi.org/10.1016/j.isci.2020.101720.","Complete 5 Cm2 Electrolyzer to Convert CO2 to Formic Acid | Dioxide Materials. https://dioxidematerials.com/product/complete-5-cm2-fa-electrolyzer/ , (accessed 05.31.23)","T. Noël, Y. Cao, G. Laudadio. The Fundamentals Behind the Use of Flow Reactors in Electrochemistry. Accounts of Chemical Research 52(10) (2019). https://doi.org/10.1021/acs.accounts.9b00412.","A. L. Silva, G. M. da Silva Salvador, S. V. F. Castro, N. M. F. Carvalho, R. A. A. Munoz. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Frontiers in Chemistry 9 (2021). https://www.frontiersin.org/articles/10.3389/fchem.2021.684256.","Chemical Resistance of 3D Printing Materials | Prusament, https://prusament.com/chemical-resistance-of-3d-printing-materials/ , 2021 (accessed 05.31.23)","W. Alnoush, R. Black, D Higgins. Judicious Selection, Validation, and Use of Reference Electrodes for in Situ and Operando Electrocatalysis Studies. Chem Catalysis 1(5) (2021). https://doi.org/10.1016/j.checat.2021.07.001.","A.R. Woldu, A. H. Shah, H. Hu, D. Cahen, X. Zhang, T. He. Electrochemical Reduction of CO2: Two- or Three-Electrode Configuration. International Journal of Energy Research 44(1) (2020). https://doi.org/10.1002/er.4904."]}
Databáze: OpenAIRE