Eksik Solar Radyasyon Verilerinin Derin Sinir Ağları ile Tamamlanması
Autor: | Eyyup Ensar BAŞAKIN, Mehmet ÖZGER |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Issue: 35 548-555 Avrupa Bilim ve Teknoloji Dergisi |
ISSN: | 2148-2683 |
Popis: | The quality of observations is fundamental issue in natural sciences. Here, the accurate and complete data is required to accomplish satisfactory estimations. There are several factors impairing the quality of measurements, such as a broken or mis-calibrated device and error in reading the measurements. Thus, this study primarily aims the imputation of the missing values in measurement of solar radiation data. Deep Neural Network (DNN) method was used to handle the missing data, and benchmarked with the classical approaches, i.e., Mean Imputation (MI), which one of the most frequently adopted data imputation method in the pertinent literature, the Linear Interpolation (LI) and Spline Interpolation (SI). The overall results highlighted that the DNN method outperformed its counterparts in terms of missing value handling through providing a greater accuracy according to the various performance metrics compared to the classical methods. It is believed that the proposed approach could make valuable contribution to the body of knowledge as well as providing significant overview to the interested researchers by filling the important gap exists in the pertinent literature. Gözlemlerin kalitesi doğa bilimlerinde önemli bir konudur. Tatmin edici tahminleri gerçekleştirmek için doğru ve eksiksiz veriler gereklidir. Bozuk veya yanlış kalibre edilmiş bir cihaz ve ölçümlerin okunmasındaki hata gibi ölçümlerin kalitesini bozan çeşitli faktörler vardır. Bu çalışmada, güneş radyasyonu verilerinin ölçümünde kayıp değerlerin tamamlanması amaçlanmaktadır. Eksik verileri işlemek için Derin Sinir Ağı (DNN) yöntemi kullanılmış ve ilgili literatürde en sık benimsenen veri atama yöntemlerinden biri olan Ortalama Atama (MI) gibi klasik yaklaşımlarla, Doğrusal İnterpolasyon (LI) ve Spline İnterpolasyon ile kıyaslama yapılmıştır. Genel sonuçlar, DNN yönteminin, klasik yöntemlere kıyasla çeşitli performans ölçütlerine göre daha fazla doğruluk sağlayarak eksik veri tamamlama açısından benzerlerinden daha iyi performans gösterdiğini vurguladı. Önerilen yaklaşımın, ilgili literatürde var olan önemli boşluğu doldurarak ilgili araştırmacılara önemli bir genel bakış sağlamanın yanı sıra bilgi birikimine değerli katkılarda bulunabileceğine inanılmaktadır. |
Databáze: | OpenAIRE |
Externí odkaz: |