Lower bounds for Seshadri constants via successive minima of line bundles
Autor: | Francois BALLAY |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Blaise Pascal (LMBP), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Ballaÿ, François |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | HAL |
Popis: | Given a nef and big line bundle $L$ on a projective variety $X$ of dimension $d \geq 2$, we prove that the Seshadri constant of $L$ at a very general point is larger than $(d+1)^{\frac{1}{d}-1}$. This slightly improves the lower bound $1/d$ established by Ein, K\"uchle and Lazarsfeld. The proof relies on the concept of successive minima for line bundles recently introduced by Ambro and Ito. Comment: 8 pages |
Databáze: | OpenAIRE |
Externí odkaz: |