Inductan: a simple, robust and fast numerical tool to evaluate self-inductance of arbitrarily shaped coil with few windings
Autor: | Elisabeth Pozzo di Borgo, Gilles Micolau |
---|---|
Přispěvatelé: | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) |
Rok vydání: | 2019 |
Předmět: |
lcsh:GE1-350
analyse canonique Curvilinear coordinates Savart Biot number Computer science Mathematical analysis 0211 other engineering and technologies 02 engineering and technology 010501 environmental sciences Space (mathematics) 01 natural sciences Inductance [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Dimension (vector space) Electromagnetic coil inducteur donnée numérique Signal and Image Processing 021108 energy lcsh:Environmental sciences Traitement du signal et de l'image (Informatique) 0105 earth and related environmental sciences Vector potential |
Zdroj: | E3S Web of Conferences E3S Web of Conferences, EDP Sciences, 2019, 88, pp.06003. ⟨10.1051/e3sconf/20198806003⟩ E3S Web of Conferences (88), 06003. (2019) E3S Web of Conferences, Vol 88, p 06003 (2019) |
ISSN: | 2267-1242 2555-0403 |
DOI: | 10.1051/e3sconf/20198806003 |
Popis: | International audience; We built a numerical tool allowing the evaluation of self-inductance of arbitrarily shaped coils with few windings. This tool named Inductan aims to be relevant, reliable and reasonably fast in order to be integrated in a more complex model. It is based on a formulation involving the vector potential and the Biot & Savart equation. The general equation giving the self-inductance coefficient is simplified according to the hypothesis of the envisaged geometry allowing to transform a 3d integral in a curvilinear integral operating on just one dimension of space. The numerical implementation is presented as exhaustively as possible, with its particular issues linked to the discrete representation of the coil. The tool is validated first on canonical geometry for which it exists an analytical formulation and second with direct experimental measurements obtained on laboratory coils with controlled and known, but not canonical, shapes. |
Databáze: | OpenAIRE |
Externí odkaz: |