Sodium Tanshinone IIA Sulfonate Ameliorates Injury-Induced Oxidative Stress and Intervertebral Disc Degeneration in Rats by Inhibiting p38 MAPK Signaling Pathway
Autor: | Xing Zhang, Rongqing Qin, Shouqian Dai, Xiu Shi, Feng Xu, Huilin Yang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Male
Aging medicine.medical_specialty Article Subject MAP Kinase Signaling System p38 mitogen-activated protein kinases medicine.medical_treatment Intraperitoneal injection Intervertebral Disc Degeneration medicine.disease_cause Biochemistry p38 Mitogen-Activated Protein Kinases Rats Sprague-Dawley Western blot Internal medicine medicine Animals Humans Aggrecan medicine.diagnostic_test QH573-671 Chemistry Intervertebral disc Cell Biology General Medicine Phenanthrenes Rats Oxidative Stress medicine.anatomical_structure Endocrinology Immunohistochemistry Tumor necrosis factor alpha Cytology Oxidative stress Drugs Chinese Herbal Research Article |
Zdroj: | Oxidative Medicine and Cellular Longevity, Vol 2021 (2021) Oxidative Medicine and Cellular Longevity |
ISSN: | 1942-0994 1942-0900 |
Popis: | Objective. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, a representative traditional Chinese medicine. The aim of the study was to investigate the capability of STS to reverse injury-induced intervertebral disc degeneration (IDD) and explore the potential mechanisms. Methods. Forty adult rats were randomly allocated into groups (control, IDD, STS10, and STS20). An IDD model was established by puncturing the Co8-9 disc using a needle. Rats in the STS groups were administered STS by daily intraperitoneal injection (10 or 20 mg/kg body weight) while rats in the control and IDD groups received the same quantity of normal saline. After four weeks, the entire spine from each rat was scanned for X-ray and MRI analysis. Each Co8-9 IVD underwent histological analysis (H&E, Safranin-O Fast green, and alcian blue staining). A tissue was analyzed by immunohistochemical (IHC) staining to determine the expression levels of collagen II (COL2), aggrecan, matrix metalloproteinase-3/13 (MMP-3/13), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Levels of oxidative stress were measured using an ELISA while activity of the p38 MAPK pathway was assessed using Western blot analysis. Results. Compared with the control group, needle puncture significantly decreased IVD volume and T-2 weighted MR signal intensity, confirming disc degeneration. These alterations were significantly attenuated by treatment with 10 or 20 mg/kg STS. Lower COL2 and aggrecan and higher MMP-3/13, IL-1β, IL-6, and TNF-α levels in the IDD group were substantially reversed by STS. In addition, treatment with STS increased antioxidative enzyme activity and decreased levels of oxidative stress induced by needle puncture. Furthermore, STS inhibited the p38 MAPK pathway in the rat model of IDD. Conclusions. STS ameliorated injury-induced intervertebral disc degeneration and displayed anti-inflammatory and antioxidative properties in a rat model of IDD, possibly via inhibition of the p38 MAPK signaling pathway. |
Databáze: | OpenAIRE |
Externí odkaz: |