Storage-heterogeneity aware task-based programming models to optimize I/O intensive applications
Autor: | Rosa M Badia, Jorge Ejarque, Hatem Elshazly |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors, Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Task-based programming models
Ordinadors -- Memòries Resource pooling Heterogeneous storage systems I/O scheduling Checkpointing Heterogeneity abstraction Computer storage devices Task scheduling Computational Theory and Mathematics Hardware and Architecture Signal Processing Automatic data movement Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC] I/O intensive applications |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Task-based programming models have enabled the optimized execution of the computation workloads of applications. These programming models can take advantage of large-scale distributed infrastructures by allowing the parallel and distributed execution of applications in high-level work components called tasks. Nevertheless, in the era of Big Data and Exascale, the amount of data produced by modern scientific applications has already surpassed terabytes and is rapidly increasing. Hence, I/O performance became the bottleneck to overcome in order to achieve more total performance improvement. New storage technologies offer higher bandwidth and faster solutions than traditional Parallel File Systems (PFS). Such storage devices are deployed in modern day infrastructures to boost I/O performance by offering a fast layer that absorbs the generated data. Therefore, it is necessary for any programming model targeting more performance to manage this heterogeneity and take advantage of it to improve the I/O performance of applications. Towards this goal, we propose in this paper a set of programming model capabilities that we refer to as Storage-Heterogeneity Awareness. Such capabilities include: (i) abstracting the heterogeneity of storage systems, and (ii) optimizing I/O performance by supporting dedicated I/O schedulers and an automatic data flushing technique. The evaluation section of this paper presents the performance results of different applications on the MareNostrum CTE-Power heterogeneous storage cluster. Our experiments demonstrate that a storage-heterogeneity aware programming model can achieve up to almost 5x I/O performance speedup and 48% total time improvement compared to the reference PFS-based usage of the execution infrastructure. This work is partially supported by the European Union through the Horizon 2020 research and innovation programme under contracts 721865 (EXPERTISE Project) by the Spanish Government (PID2019-107255GB) and the Generalitat de Catalunya (contract 2014-SGR-1051). |
Databáze: | OpenAIRE |
Externí odkaz: |