Pre-fracture zone modeling for an interface crack in an isotropic bimaterial

Autor: Oleksandr Mykhail, Volodymyr Loboda
Jazyk: ukrajinština
Rok vydání: 2020
Předmět:
Zdroj: Bulletin of the National Technical University «KhPI» Series: Dynamics and Strength of Machines; № 2 (2020): ; 67-72
Вісник Національного технічного університету «ХПІ». Серія: Динамiка та мiцнiсть машин; № 2 (2020): Вісник НТУ "ХПІ": Серія "Динаміка та міцність машин"; 67-72
ISSN: 2078-9130
Popis: Розглянута тріщина між двома ізотропними матеріалами під дією віддаленого комбінованого навантаженням. Для усунення осцилюючої особливості, що виникає при використані класичної моделі тріщини пропонується підхід, оснований на введенні зсувних зон передруйнування на її продовженнях. Проведено аналітичне дослідження цієї моделі шляхом зведення поставленої проблеми до комбінованої задачі лінійного спряження Діріхле-Рімана. Завдяки точному розв’язку цієї задачі знайдені досить прості вирази для напружень, їх коефіцієнтів інтенсивності та швидкості звільнення енергії. Розгляну також аналогічна модель для тіла скінчених розмірів при умові, що розмір тріщини значно менший характерного розміру області. Розглянуті різні величини зсувного напруження у зонах передруйнування. У цьому випадку розв’язок побудовано методом скінчених елементів. Знайдено локальні швидкості звільнення енергії біля сингулярних точок, а також її глобальні значення. Виявлено хорошу узгодженість аналітичного та чисельного розв’язків.
An interface crack in an infinite bimaterial space under remote combining loading is considered. The complex potentials approach is applied and an exact analytical solution of this problem is presented. To remove the oscillating singularities which occur in this solution a model based on the introduction of the shear stress pre-fracture zones at the crack tips is suggested. In the framework of this assumption the nonhomogeneous combined Dirichlet-Riemann boundary value problem with the conditions at infinity is formulated and its analytical solution is presented. The length of this zone is found from the condition of restriction of the shear stress at the end point of the zone. In this case the shear stress becomes finite in the right hand side of the pre-fracture zone while the normal stress has a square root singularity at the crack tip. The energy release rates (ERR) at the crack tip and also along the pre-fracture zone are found and their total values are compared the ERR of the classical model. For the case of a similar problem, but for finite sized body the finite element method is applied. The crack length is assumed to be much smaller then characteristic body size. The finite element net with two levels of concentration is constructed. The first level provides the uniform concentration from the boundaries of the body to the crack and the second level assumes the similar concentration at the singular points of the pre-fracture zone. The different values of the shear stress in the pre-fracture zone are considered and the local ERR at the singular points as well as the global energy release rate is found. It is shown that for different values of the mentioned shear stress the global energy release rate remains almost invariable and is in a a good agreement with the analytical solution.
Databáze: OpenAIRE