Popis: |
We have investigated decentralized active control of periodic panel vibration using multiple pairs combining PZT actuators and PVDF sensors distributed on the panel. By contrast with centralized MIMO controllers used to actively control the vibrations or the sound radiation of extended structures, decentralized control using independent local control loops only requires identification of the diagonal terms in the plant matrix. However, it is difficult to a priori predict the global stability of such decentralized control. In this study, the general situation of noncollocated actuator-sensor pairs was considered. Frequency domain gradient and Newton-Raphson adaptation of decentralized control were analyzed, both in terms of performance and stability conditions. The stability conditions are especially derived in terms of the adaptation coefficient and a control effort weighting coefficient. Simulations and experimental results are presented in the case of a simply supported panel with four PZT-PVDF pairs distributed on it. Decentralized vibration control is shown to be highly dependent on the frequency, but can be as effective as a fully centralized control even when the plant matrix is not diagonal-dominant or is not strictly positive real (not dissipative). |