Revisiting the dispersion safety factor (DSF) for vapor clouds of liquefied flammable gases (LNG and propane)
Autor: | Adriana Miralles Schleder, Joan Garcia i Subirana, Elsa Pastor, Eulàlia Planas, Alba Àgueda |
---|---|
Přispěvatelé: | Univ Politecn Cataluna, Universidade Estadual Paulista (Unesp), Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. CERTEC - Centre d'Estudis del Risc Tecnològic |
Rok vydání: | 2020 |
Předmět: |
0211 other engineering and technologies
Gasos inflamables -- Accidents 02 engineering and technology Computational fluid dynamics Wind speed chemistry.chemical_compound Enginyeria química [Àrees temàtiques de la UPC] FLAGS Propane 021105 building & construction Dispersion (optics) 0501 psychology and cognitive sciences Relative humidity Safety Risk Reliability and Quality 050107 human factors Flammability Flammable liquid business.industry 05 social sciences Public Health Environmental and Occupational Health Mechanics FLACS chemistry Contour line CFD simulation Wind velocity Environmental science Visible cloud business Safety Research |
Zdroj: | Web of Science Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 0925-7535 |
DOI: | 10.1016/j.ssci.2020.104748 |
Popis: | Made available in DSpace on 2020-12-10T19:58:46Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-08-01 Spanish Ministry of Economy and Competitiveness FEDER funds The concept of the Dispersion Safety Factor (DSF) was introduced by Vilchez et al. (2013, 2014) and has been revisited in this work. The DSF is defined as the ratio between the flammable region of the vapor cloud (set at a concentration equal to the low flammability level (LFL)) and the corresponding visible boundary of the cloud. We have used a computational fluid dynamics model (FLACS v.10.4) to simulate the dispersion of two liquefied flammable fuels (LNG and propane). DSF results have been analyzed using main effects and interaction plots, and a complementary metric (DSF50) has been introduced in order to establish more conservative threat areas in flammable vapor cloud scenarios. We have observed an interaction between relative humidity and wind velocity for DSF in the low-to-medium range of RH and wind velocity values. Four regression models have been proposed for the computation of DSF and DSF50 for LNG and propane dependent on ambient wind velocity and relative humidity. Contour plots have been prepared to be used as a practical tool, because through the reading of these plots the DSF (and DSF50) can be obtained immediately given wind velocity and relative humidity data. Univ Politecn Cataluna, Ctr Technol Risk Studies CERTEC, Dept Chem Engn, BarcelonaTech, Av Eduard Maristany 16, Barcelona 08019, Catalonia, Spain Sao Paulo State Univ UNESP, Dept Ind Engn, Geraldo Alckmin 519, Itapeva 18409010, SP, Brazil Sao Paulo State Univ UNESP, Dept Ind Engn, Geraldo Alckmin 519, Itapeva 18409010, SP, Brazil Spanish Ministry of Economy and Competitiveness: CTQ2017-85990-R |
Databáze: | OpenAIRE |
Externí odkaz: |