Influence of free and immobilized chitosan on a defined human gut microbial ecosystem

Autor: María Ruiz-Rico, Simone Renwick, Sarah J. Vancuren, Avery V. Robinson, Connor Gianetto-Hill, Emma Allen-Vercoe, José M. Barat
Rok vydání: 2022
Předmět:
Zdroj: Food Research International. 161:111890
ISSN: 0963-9969
DOI: 10.1016/j.foodres.2022.111890
Popis: In this work, the influence of different forms of presentation of chitosan in the human gut microbiota with a defined bacterial community was evaluated. First, the susceptibility of individual gut bacterial isolates against chitosan was studied within a concentration range between 0.125 and 1 mg/mL. Then, the impact of chitosan (0.25 and 1 mg/mL) on a defined human gut microbial ecosystem was studied by metagenomic and metabonomic analyses. The results showed that chitosan in its free form had a high impact on individual isolates with a minimum inhibitory concentration below 1 mg/mL for most of the strains studied. In comparison, chitosan immobilized in the different carriers displayed a diverse effect on gut microbiota. The most susceptible strains were Agathobacter rectalis strain 16-6-I 1 FAA, Clostridium spiroforme strain 16-6-I 21 FAA and Mediterraneibacter faecis strain 16-6-I 30 FAA. The impact of the different modes of presentation of chitosan was strain-specific and species-specific when compared to results obtained from analysis of other strains within the genera Agathobacter, Clostridium and Mediterraneibacter, and therefore a study using a defined ecosystem was needed to extrapolate the results. Significant decreases in defined community richness and diversity and changes in metabolic profile were observed after exposure to free chitosan. Free chitosan produced significant reductions in the abundance of the genera Lachnoclostridium, Anaerotignum, Blautia, Enterococcus, Eubacterium and Ruthenibacterium together with a slight decrease of the production of SCFAs, among other fermentation by-products. The immobilized chitosan significantly alleviated the impact caused by the antimicrobial polymer and significantly increased the relative abundance of the Bacteroidetes phylum compared to free chitosan. These results suggest the significance of assessing the impact of new ingredients and materials included in food on the human gut microbiota with models that simulate the gastrointestinal environment, such as in vitro bioreactor systems.
Databáze: OpenAIRE