Effect of a priori distributions in Bayesian D-optimal designs for a correlated non-linear model

Autor: Víctor Ignacio López Ríos, Juan Carlos Mosquera Benítez
Jazyk: Spanish; Castilian
Rok vydání: 2019
Předmět:
Zdroj: Ciencia en Desarrollo, Volume: 10, Issue: 2, Pages: 165-170, Published: DEC 2019
Popis: Resumen En la práctica pueden surgir complicaciones a la hora de construir diseños óptimos para modelos de regresión no lineales, uno de los grandes problemas se evidencia cuando las observaciones son correlacionadas, debido a que éstas son tomadas de un mismo individuo, objeto o unidad experimental. Al momento de utilizar el criterio de D-optimalidad este depende tanto del vector de parámetros del modelo como de la estructura de correlación supuesta para el término de error. Una forma de evitar esta dependencia es mediante la inclusión de distribuciones a priori en el criterio de D-optimalidad. En este artículo se estudia el efecto que tiene la escogencia de diferentes distribuciones a priori, tales como las distribuciones Uniforme, Gamma y Lognormal en la obtención de los diseños D-óptimos para un modelo no lineal, cuando los errores presentan diferentes estructuras de correlación. Se hallan los diseños al maximizar el criterio de D-optimalidad aproximado por el método de Monte Carlo. Además, se propone una metodología general que permite hallar diseños D-óptimos para cualquier tipo de modelo no lineal en presencia de observaciones correlacionadas. Finalmente, se propone comparar los diseños encontrados mediante el cálculo de las eficiencias tomando como diseño de referencia el obtenido con la distribución a priori Uniforme. Se aplica la metodología establecida en un caso de estudio, y se concluye que los diseños obtenidos dependen tanto de la estructura de correlación como de la distribución a priori considerada. Abstract In practice, complications can arise when constructing optimal designs for non-linear regression models. One of the major problems is when the observations are correlated, since they are taken from the same individual, object or experimental unit. When using the D-optimality criterion, it depends both on the parameter vector of the model and on the correlation structure assumed for the error term. One way to avoid this dependence is through the inclusion of a priori distributions in the D-optimality criterion. In this paper we study the effect of the choice of different a priori distributions, such as the Uniform, Gamma and Lognormal distributions in obtaining the D-optimal designs for a non-linear model, when the errors present different correlation structures. The designs are found by maximizing the approximate D-optimality criterion by the Monte Carlo method. In addition, a general methodology is proposed to find D-optimal designs for any type of non-linear model in the presence of correlated observations. Finally, it is proposed to compare the designs found by calculating the efficiencies taking as a reference design the one obtained with the a priori Uniform distribution. The methodology established in a case study is applied, and it is concluded that the designs obtained depend as much on the correlation structure as on the a priori distribution considered.
Databáze: OpenAIRE