VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT:PSS-MWCNTs nanocomposite film for environmental applications

Autor: Hamida Hallil-Abbas, Corinne Dejous, Jean-Luc Lachaud, Dominique Baillargeat, Dominique Rebière, Carlos Paragua, Aymen Abdelghani, Philippe Coquet, Qing Zhang, Henri Happy, Emmanuelle Pichonat, Prince Bahoumina, Stephane Bila, Kamel Frigui
Přispěvatelé: Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Systèmes RF (XLIM-SRF), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), School of Computer Engineering [Singapore] (NTU), Nanyang Technological University [Singapour], CNRS International - NTU - Thales Research Alliance (CINTRA), THALES [France]-Nanyang Technological University [Singapour]-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Carbon - IEMN (CARBON - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), camus ANR, Renatech Network, ANR-13-BS03-0010,CAMUS,Microcapteurs de gaz ultrasensibles à transduction micro-onde et matériaux carbonés.(2013), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), School of Computer Engineering, Nanyang Technological University, CNRS International NTU THALES Research Alliance (UMI CINTRA), THALES-Nanyang Technological University [Singapour]-Centre National de la Recherche Scientifique (CNRS), Carbon-IEMN (CARBON-IEMN)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology, 2018, pp.1-15. ⟨10.1109/TNANO.2018.2828302⟩
IEEE Transactions on Nanotechnology, Institute of Electrical and Electronics Engineers, In press, pp.1-15. ⟨10.1109/TNANO.2018.2828302⟩
ISSN: 1536-125X
DOI: 10.1109/TNANO.2018.2828302⟩
Popis: It has been recommended by the authors and Editor-in-Chief of the IEEE Transactions on Nanotechnology that this article will not be published in itsfinal form. It should not be considered for citation purposes; International audience; This paper presents the feasibility of a low-cost fully inkjet printed capacitive microwave flexible gas sensor based on a resonant electromagnetic transducer in micro-strip technology with poly (3,4-ethylenedioxythiophene) polystyrene sulfonate and multi wall carbon nanotubes (PEDOT:PSS-MWCNTs) as sensitive material for Volatile Organic Compounds (VOCs) detection. The design and simulation results of the device on paper substrate for differential measurements are first described. This theoretical study based on both analytical and Finite Element Model approaches, validates the operating principle. The fabrication process and experimental devices are then presented, as well as electrical characterization results, both in air and under selected vapor analytes. These experimental results show the good sensor repeatability and sensitivity according to the transmission S parameter resonant frequency shift equal to -2.153 kHz/ppm and -1.855 kHz/ppm for ethanol and toluene vapor concentrations from 500 to 1300 ppm, respectively. This leads to conclude on promising future of such passive sensors and further integration into real-time multi-sensing platform adaptable for the Internet of Things (IoT)
Databáze: OpenAIRE