Parabolic semi-orthogonal decompositions and Kummer flat invariants of log schemes
Autor: | Sarah Scherotzke, Nicolò Sibilla, Mattia Talpo |
---|---|
Rok vydání: | 2018 |
Předmět: |
General Mathematics
14F05 14C15 19L10 K-theory Logarithmic geometry semi-orthogonal decompositions Mathematics - Algebraic Geometry Mathematics::Category Theory FOS: Mathematics Mathematics [G03] [Physical chemical mathematical & earth Sciences] Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre] Settore MAT/03 - Geometria Algebraic Geometry (math.AG) |
DOI: | 10.48550/arxiv.1803.06398 |
Popis: | We construct semi-orthogonal decompositions on triangulated categories of parabolic sheaves on certain kinds of logarithmic schemes. This provides a categorification of the decomposition theorems in Kummer flat K-theory due to Hagihara and Nizio{\l}. Our techniques allow us to generalize Hagihara and Nizio{\l}'s results to a much larger class of invariants in addition to K-theory, and also to extend them to more general logarithmic stacks. DOCUMENTA MATHEMATICA, Vol 25 (2020), p. 955-1009 |
Databáze: | OpenAIRE |
Externí odkaz: |