Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip

Autor: Antoine Leblond
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Numerical Analysis, Geophysics and Ecology (ANGE), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ANR-18-CE40-0027,SingFlows,Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure(2018), European Project: 637653,H2020,ERC-2014-STG,BLOC(2015), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, 2022, 158, ⟨10.1016/j.matpur.2021.10.006⟩
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2021.10.006⟩
Popis: We consider the Stokes-transport system, a model for the evolution of an incompressible viscous fluid with inhomogeneous density. This equation was already known to be globally well-posed for any L 1 ∩ L ∞ initial density with finite first moment in R 3 . We show that similar results hold on different domain types. We prove that the system is globally well-posed for L ∞ initial data in bounded domains of R 2 and R 3 as well as in the infinite strip R × ( 0 , 1 ) . These results contrast with the ill-posedness of a similar problem, the incompressible porous medium equation, for which uniqueness is known to fail for such a density regularity.
Databáze: OpenAIRE