The local Jacquet--Langlands correspondence and congruences modulo {\ell}
Autor: | M��nguez, Alberto, S��cherre, Vincent |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | francouzština |
Rok vydání: | 2015 |
Předmět: |
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
Mathematics - Number Theory Mathematics::Number Theory Congruences mod ℓ-adic lifting Jacquet-Langlands correspondence [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Congruences mod ℓ adic lifting and Phrases: Modular representations of p-adic reductive groups Modular representations of p-adic reductive groups FOS: Mathematics Jacquet-Lang- lands correspondence Speh representations Number Theory (math.NT) Representation Theory (math.RT) Mathematics::Representation Theory Mathematics - Representation Theory Cuspidal representations |
Zdroj: | Inventiones Mathematicae Inventiones Mathematicae, Springer Verlag, 2017, 208 (2), pp.553-631. ⟨10.1007/s00222-016-0696-y⟩ Inventiones Mathematicae, 2017, 208 (2), pp.553-631. ⟨10.1007/s00222-016-0696-y⟩ |
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-016-0696-y⟩ |
Popis: | Let F be a non-Archimedean local field of residual characteristic p, and {\ell} be a prime number different from p. We consider the local Jacquet-Langlands correspondence between {\ell}-adic discrete series of GL(n,F) and an inner form GL(m,D). We show that it respects the relationship of congruence modulo {\ell}. More precisely, we show that two integral {\ell}-adic discrete series of GL(m,D) are congruent modulo {\ell} if and only if the same holds for their Jacquet-Langlands transfers to GL(m,D). in French |
Databáze: | OpenAIRE |
Externí odkaz: |