The local Jacquet--Langlands correspondence and congruences modulo {\ell}

Autor: M��nguez, Alberto, S��cherre, Vincent
Přispěvatelé: Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: francouzština
Rok vydání: 2015
Předmět:
Zdroj: Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2017, 208 (2), pp.553-631. ⟨10.1007/s00222-016-0696-y⟩
Inventiones Mathematicae, 2017, 208 (2), pp.553-631. ⟨10.1007/s00222-016-0696-y⟩
ISSN: 0020-9910
1432-1297
DOI: 10.1007/s00222-016-0696-y⟩
Popis: Let F be a non-Archimedean local field of residual characteristic p, and {\ell} be a prime number different from p. We consider the local Jacquet-Langlands correspondence between {\ell}-adic discrete series of GL(n,F) and an inner form GL(m,D). We show that it respects the relationship of congruence modulo {\ell}. More precisely, we show that two integral {\ell}-adic discrete series of GL(m,D) are congruent modulo {\ell} if and only if the same holds for their Jacquet-Langlands transfers to GL(m,D).
in French
Databáze: OpenAIRE