High-order residual distribution and error estimation for steady and unsteady compressible flow

Autor: N. Villedieu, Mario Ricchiuto, Lila Kolozar, Stefano D'Angelo, Martin Vymazal, Herman Deconinck
Přispěvatelé: Aeronautics and Aerospace Department [Rhode-St-Genèse], von Karman Institute for Fluid Dynamics (VKI), CERFACS, Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Notes on Numerical Fluid Mechanics and Multidisciplinary Design
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128, Springer, pp.381-395, 2015, Notes on Numerical Fluid Mechanics and Multidisciplinary Design
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783319128856
Popis: In the first part, an extension of upwind residual distribution schemes for high-order accurate solution of hyperbolic problems is introduced, based on the use of spatially varying distribution matrices. Following this, the application to adjoint-based error estimation for steady compressible flow is presented. Finally the resolution of acoustic wave propagation by a space-time residual distribution is discussed. The accuracy of the methodology is demonstrated on several test cases.
Databáze: OpenAIRE